Citation: NIE Su-Lian, ZHAO Yan-Chun, FAN Jie-Wen, TIAN Jian-Niao, NING Zhen, LI Xiao-Xiao. Highly Active Pd-Co3O4/MWCNTs Catalysts for Methanol Electrocatalytic Oxidation[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 871-876. doi: 10.3866/PKU.WHXB201202013 shu

Highly Active Pd-Co3O4/MWCNTs Catalysts for Methanol Electrocatalytic Oxidation

  • Received Date: 19 October 2011
    Available Online: 1 February 2012

    Fund Project: 广西自然科学基金(2010GXNSFF013001, 0728043) (2010GXNSFF013001, 0728043)国家自然科学基金(21163002)资助项目 (21163002)

  • Nano-flocculent-Co3O4 modified multi-walled carbon nanotubes supported Pd nanoparticles (Pd-Co3O4/MWCNTs) with uniform dimensions were prepared by a facile hydrothermal method using Co(NO3)3·6H2O as the cobalt source, polyethylene glycol (PEG) 20000 as a surface active agent, and H2PdCl4 as the Pd precursor. The catalysts were characterized by scanning electron microscopy, transmission electron microscopy, and X-ray powder diffraction. The Pd nanoparticles had a face-centered cubic crystal structure and were well dispersed on the external walls of the Co3O4/MWCNTs. The catalytic activity was studied by cyclic voltammetry and chronoamperometry toward methanol oxidation. The Pd-Co3O4/MWCNT catalysts had a large electrochemically active area, od electrocatalytic performance, and stability toward methanol oxidation in alkaline media. All the results suggest that Co3O4 will improve the electrocatalytic activity in direct methanol fuel cells.
  • 加载中
    1. [1]

      (1) Zhang, Y. G.; Chen, Y. C.;Wang, T. Microporous Mesoporous Mater. 2008, 114 (1-3), 257.

    2. [2]

      (2) Kumar, U.; Shete, A.; Harle, A. S. Chem. Mater. 2008, 20 (4), 1484.

    3. [3]

      (3) Liu, X. H.; Qiu, G. Z.; Li, X. G. Nanotechnology 2005, 16 (12), 3035.

    4. [4]

      (4) Li,W. Y.; Xu, L. N.; Chen, J. Adv. Funct. Mater. 2005, 15 (5), 851.

    5. [5]

      (5) Yue,W. B.; Hill, A. H.; Harrison, A.; Zhou,W. Z. Chem. Commun. 2007, No. 24, 2518.

    6. [6]

      (6) Lou, X.W.; Archer, L. A.; Yang, Z. C. Adv. Mater. 2008, 20 (21), 3987.

    7. [7]

      (7) Rumplecker, A.; Kleitz, F.; Salabas, E. L.; Schuth, F. Chem. Mater. 2007, 19 (3), 485.

    8. [8]

      (8) Wang, X.; Chen, X. Y.; Gao, L. S.; Zheng, H. G.; Zhang, Z.; Qian, Y. T. J. Phys. Chem. B 2004, 108 (42), 16401.

    9. [9]

      (9) Li, Y. G.; Tan, B.;Wu, Y. Y. J. Am. Chem. Soc. 2006, 128 (44), 14258.

    10. [10]

      (10) Ardizzone, S.; Spinolo, G.; Trasatti, S. Electrochim. Acta 1995, 40 (16), 2683.

    11. [11]

      (11) Salavati-Niasari, M.; Mir, N.; Davar, F. J. Phys. Chem. Solids 2009, 70 (5), 847.

    12. [12]

      (12) Cao, J. Z.; Zhao, Y. C.; Yang,W.; Tian, J. N.; Guan F.; Ma, Y. J. J. Univ. Sci. Technol. B 2003, 10 (1), 54.

    13. [13]

      (13) Tripathy, S. K.; Christy, M.; Nam-Hee, P.; Suh, E. K.; Anand, S.; Yu, Y. T. Mater. Lett. 2008, 62 (6-7), 1006.

    14. [14]

      (14) Liu, Y.; Mi, C.H.; Su, L.H.; Zhang, X.G. Electrochim. Acta 2008, 53 (5), 2507.

    15. [15]

      (15) Nethravathi, C.; Sen, S.; Ravishankar, N.; Rajamathi, M.; Pietzonka, C.; Harbrecht, B. J. Phys. Chem. B 2005, 109 (23), 11468.

    16. [16]

      (16) Sun, L. N.; Li, H. F.; Ren, L.; Hu, C.W. Solid State Sci. 2009, 11 (1), 108.

    17. [17]

      (17) Bahlawane, N.; Rivera, E. F.; Kohse-Höinghaus, K.; Brechling, A.; Kleineberg, U. Appl. Catal. B 2004, 53 (4), 245.

    18. [18]

      (18) Jiang, Y.;Wu, Y.; Xie, B.; Qian, Y. T. Mater. Chem. Phys. 2002, 74 (2), 234.

    19. [19]

      (19) Li,W. Y.; Xu, L. N.; Chen, J. Adv. Funct. Mater. 2005, 15 (5), 851.

    20. [20]

      (20) Qiu, C.; Shang, R.; Xie, Y.; Bu, Y.; Li, C.; Ma, H. Mater. Chem. Phys. 2010, 120 (2-3), 323.

    21. [21]

      (21) Zhao, X. C.; Zhan, L.; Tian, J. N.; Nie, S. L.; Ning, Z. Acta Phys. -Chim. Sin. 2011, 27 (1), 91. [赵彦春, 占璐, 田建袅, 聂素连, 宁珍. 物理化学学报, 2011, 27 (1), 91.]

    22. [22]

      (22) Jiang, D. E.; Dai, S. Phys. Chem. Chem. Phys. 2011, 13 (3), 978.

    23. [23]

      (23) Niu, B.; Man, L. Y.; Qi, E. L.;Wang, J. Q. J.Chin.Ceram.Soc. 2011, 39 (5), 758. [牛锛, 满丽莹, 齐恩磊, 王介强. 硅酸盐学报, 2011, 39 (5), 758.]

    24. [24]

      (24) Shen, P. K.; Xu, C.W. Electrochem. Commun. 2006, 8 (1), 184.

    25. [25]

      (25) Xu, C.W.; Shen, P. K.; Liu, Y. L. J. Power Sources 2007, 164 (2), 527.

    26. [26]

      (26) Xu, M.W.; Gao, G. Y.; Zhou,W. J.; Zhang, K. F.; Li, H. L. J. Power Sources 2008, 175 (1), 217.

    27. [27]

      (27) Zhang, K. F.; Guo, D. J.; Liu, X.; Li, J.; Li, H. L.; Su, Z. X. J. Power Sources 2006, 162 (2), 1077.

    28. [28]

      (28) Prabhuram, J.; Zhao, T. S.; Tang, Z. K. J. Phys. Chem. B 2006, 110 (11), 5245.

    29. [29]

      (29) Huang, K. L.; Liu, R. S.; Yang, R. P. Acta Phys.-Chim.Sin. 2007, 23 (5), 655. [黄可龙, 刘人生, 杨幼平等. 物理化学学报, 2007, 23 (5), 655.]

    30. [30]

      (30) Singh, R. N.; Singh, A.; Anindita. Carbon 2009, 47 (1), 271.

    31. [31]

      (31) Zhao, Y. C.; Yang, X. L.; Tian, J. N.;Wang, F. Y.; Zhan, L. Int. J. Hydrog. Energy 2010, 35 (8), 3249.

    32. [32]

      (32) Zeng,W.W.; Huang, K. L.; Yang, R. P. Acta Phys. -Chim. Sin. 2008, 24 (2), 263. [曾雯雯, 黄可龙, 杨幼平等. 物理化学学报, 2008, 24 (2), 263.]

    33. [33]

      (33) Wu,W.;Wang, Y. G.; Li, F. Acta Chim. Sin. 2009, 67 (3), 208. [吴雯, 王永刚, 李峰等. 化学学报, 2009, 67 (3), 208.]

    34. [34]

      (34) Sun, Z. P.; Zhang, X. G.; Liang, Y. Y.; Li, H. L. Electrochem. Commun. 2009, 11 (3), 557.

    35. [35]

      (35) Singh, R. N.; Singh, A.; Anindita. Int. J. Hydrog. Energy 2009, 34 (4), 2052.

    36. [36]

      (36) Vidakovic, T.; Christov, M.; Sundmacher, K. Electrochim. Acta 2007, 52 (18), 5606.

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    4. [4]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    7. [7]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    8. [8]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    9. [9]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    12. [12]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    14. [14]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    17. [17]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    18. [18]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(1008)
  • Abstract views(2442)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return