Citation: LIU Bo, SUN Hong-Juan, PENG Tong-Jiang. Factor Group Analysis of Molecular Vibrational Modes of Graphene and Density Functional Calculations[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 799-804. doi: 10.3866/PKU.WHXB201202012 shu

Factor Group Analysis of Molecular Vibrational Modes of Graphene and Density Functional Calculations

  • Received Date: 7 November 2011
    Available Online: 1 February 2012

    Fund Project: 西南科技大学博士基金(11ZX7135)资助项目 (11ZX7135)

  • The molecular vibrational modes of graphene were analyzed theoretically by factor group analysis. The molecular vibrational modes of graphene and the spectral characteristics of each vibrational mode were calculated successfully. The molecular vibrational frequency and mode of graphene were also calculated by first-principles density functional theory based on establishment of the graphene Bravais crystal unit cell. The number of vibrational modes and corresponding vibrational frequency spectral properties calculated were consistent with the results obtained using factor group analysis. The above calculations and systematic comparison between the infrared and Raman spectra of graphene and graphite were used to determine why the infrared active vibrational modes A2u and E1u with D6h point group did not appear on the experimental infrared spectrum of graphene.
  • 加载中
    1. [1]

      (1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  

    2. [2]

      (2) Landau, L. D. Phys. Z. Sowjetunion 1937, 11, 26.

    3. [3]

      (3) Peierls, R. E. Ann Inst. Henri Poincare 1935, 5, 177.

    4. [4]

      (4) Geim, A. K.; Novoselov, K. S. Nat. Mat. 2007, 6, 183.  

    5. [5]

      (5) Tse,W. K.; Das, S. S. Phys. Rev. Lett. 2007, 99, 236802.  

    6. [6]

      (6) Liang,W.; Xiao, Y.; Ding, J.W. Acta Phys. Sin. 2008, 57, 3714. [梁维, 肖杨, 丁建文. 物理学报. 2008, 57, 3714.]

    7. [7]

      (7) Tuinstra, F.; Koenig, J. L. J. Chem. Phys. 1970, 53, 1127.

    8. [8]

      (8) Xiao, Y.; Yan, X. H.; Cao, J. X.; Ding, J.W. Acta Phys. Sin. 2003, 7, 1720. [肖杨,颜晓红, 曹觉先, 丁建文. 物理学报, 2003, 7, 1720.]

    9. [9]

      (9) Sun, F. J.; Lou, D. H.; Li, L. J. Journal of Northeastern University(Natural Science) 2008, 29, 145. [孙凤久, 楼丹花, 李莉娟. 东北大学学报: 自然科学版, 2008, 29, 145.]

    10. [10]

      (10) Peng, T. J. Study on crystal chemistry of phlo pite-vermiculite from weili, XinJiang. Ph. D. Dissertation, China University of Geosciences, Beijing, 1993. [彭同江. 新疆尉犁县且干布拉克蛭石矿金云母-蛭石间层矿物的晶体化学研究[D]. 北京: 中国地质大学, 1993.]

    11. [11]

      (11) Segall, M. D.; Lindan, P. L. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.: Condens. Matter 2002, 14, 2717.  

    12. [12]

      (12) Lin, M. H. Concise Guide of Quantum Chemistry; Chemical Industry Press: Beijing, 2005; p 274. [林梦海. 量子化学简明教程. 北京: 化学工业出版社, 2005: 274.]  

    13. [13]

      (13) Falkovsky, L.A. Phys. Lett. A 2008, 372, 5191.

    14. [14]

      (14) Yang, X. G.;Wu, Q. L. Raman Spectroscopy Analysis and Application; National Defence Industry Press: Beijing, 2008; pp 11-12. [杨序纲, 吴琪琳. 拉曼光谱的分析与应用. 北京: 国防工业出版社, 2008, 11-12.]  

    15. [15]

      (15) Vosko, S. J.;Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.  

    16. [16]

      (16) Zhang, X. M.;Wang, L. G.; Li, Y. J. At. Mol. Phys. 2008, 25, 755. [张秀梅, 王利光, 李勇. 原子与分子物理学报, 2008, 25, 755.]

    17. [17]

      (17) Huang, K. Solid State Physics; Higher Education Press: Beijing, 1988; pp 92-103; adapted by Han, R. Q. [黄昆. 固体物理学. 韩汝琦, 改编. 北京: 高等教育出版社, 1988, 92-103.]

    18. [18]

      (18) Balandin, A. A.; Ghosh, S.; Bao,W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 903.

    19. [19]

      (19) Yang, Y. H.; Sun, H. J.; Peng, T. J.; Huang, Q. Acta Phys. -Chim. Sin. 2011, 27, 740. [杨勇辉, 孙红娟, 彭同江, 黄桥. 物理化学学报, 2011, 27, 740.]

    20. [20]

      (20) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D; Novoselov, K. S.; Roth, S.; Geim, A. K. Phys. Rev. Lett. 2006, 97, 187401.  

    21. [21]

      (21) Malarda, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Phys. Rep. 2009, 473, 54.

    22. [22]

      (22) Ferrari, A. C.; Robertson, J. Phys. Rev. B 2000, 61, 14098.

    23. [23]

      (23) Stephanie, R.; Christian, T. Phil. Trans. R. Soc. Lond. A 2004, 362, 2273.

    24. [24]

      (24) Wu, G. Z. Raman Spectroscopy: An intensity approach; Science Press: Beijing, 2007; pp 61-62. [吴国桢. 拉曼谱学: 峰强中的信息. 北京: 科学出版社, 2007: 61-62.]

    25. [25]

      (25) Nemanich, R. J.; Lucovsky, G.; Solin, S. A. Mater. Sci. Eng. 1977, 31, 157.  

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    6. [6]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    7. [7]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    8. [8]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    9. [9]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    10. [10]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    11. [11]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    12. [12]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    13. [13]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    16. [16]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    17. [17]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    20. [20]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

Metrics
  • PDF Downloads(1401)
  • Abstract views(3784)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return