Citation: CHENG Hui, DONG Jiang-Zhou, CHAO Hui, YAO Jiang-Hong, CAO Ya-An. Infection of Oxygen Vacancy at the TiO2 Surface for Film Electrode Rup2P/TiO2/ITO Photo-Induced Charge Transfer[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 850-856. doi: 10.3866/PKU.WHXB2012020111 shu

Infection of Oxygen Vacancy at the TiO2 Surface for Film Electrode Rup2P/TiO2/ITO Photo-Induced Charge Transfer

  • Received Date: 2 November 2011
    Available Online: 1 February 2012

    Fund Project: 国家自然科学基金(50872056, 51072082, 21173121, 11074129)资助项目 (50872056, 51072082, 21173121, 11074129)

  • The surface properties of TiO2-X (X=5, 10, 20, X=[NaOH] (in mol·L-1)) samples prepared by modification of hydrolyzed TiCl4 were studied. The surface-sensitized Ru(phen)2(PIBH) (Rup2P) (phen= phenanthroline, PIBH=pyridyl benzimidazole hybrid) film electrodes Rup2P/TiO2-5/ITO (indium tin oxide), Rup2P/TiO2-10/ITO, and Rup2P/TiO2-20/ITO were prepared. Among the three films, the photovoltaic properties of Rup2P/TiO2-10/ITO were the best and those of Rup2P/TiO2-5/ITO were the worst. The band structures, and properties on the surfaces of Rup2P and the three TiO2 samples were analyzed using absorption spectra, surface photovoltage spectra, photoluminescence spectra, and photocurrent action spectra. The photo-induced charge transfer process was studied by cyclic voltammetry under irradiation and photocurrent action spectra. The results revealed the oxygen vacancy at the TiO2 surface was very important for the photo-induced charge transfer process of Rup2P/TiO2-X/ITO. The photocurrent mechanism of Rup2P/TiO2-X/ITO is discussed.
  • 加载中
    1. [1]

      (1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  

    2. [2]

      (2) Gratzel, M. J. Photochem. Photobiol. C-Photochem. Rev. 2003, 4, 145.  

    3. [3]

      (3) Peng, B.; Jungmann, G.; Jager, C.; Haarer, D.; Schmidt, H.; Thelakkat, M. Coord. Chem. Rev. 2004, 248, 1479.  

    4. [4]

      (4) Nazeeruddin, M. K.; Gr?tzel, M. J. Am. Chem. Soc. 2001, 123, 1613.  

    5. [5]

      (5) Wang, P.; Zakeeruddin, S. M.; Gr?tzel, M. J. Phys. Chem. B 2003, 107, 14336.  

    6. [6]

      (6) Gr?tzel, M. Nature 2001, 414, 338.  

    7. [7]

      (7) Min-Hye, K.; Young-Uk, K. J. Phys. Chem. C 2009, 113, 17176.  

    8. [8]

      (8) Zaban, A.; Zhang, J. J. Phys. Chem. B 2003, 107, 6022.  

    9. [9]

      (9) Hagfeldt, A.; Gr?tzel, M. Accounts Chem. Res. 2000, 33, 269.  

    10. [10]

      (10) Gr?tzel, M. Nature 2003, 421, 586.  

    11. [11]

      (11) Gr?tzel, M. Inorg. Chem. 2005, 44, 6841.  

    12. [12]

      (12) Kopidakis, N.; Benkstein, K. D.; Lagemaat, J.; Frank, A. J. J. Phys. Chem. B 2003, 107, 11307.

    13. [13]

      (13) Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.;Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gr?tzel, M. Nature 1998, 395, 583.  

    14. [14]

      (14) Srinivas, K.; Yesudas, K. J. Phys. Chem. C 2009, 113, 20117.  

    15. [15]

      (15) Shi, D.; Cao, Y. M. J. Phys. Chem. C 2008, 112, 17478.  

    16. [16]

      (16) Gebeyehu, D.; Brabec, C. J.; Sariciftci, N. S.; Vangeneugden, D.; Kiebooms, R.; Vanderzande, D.; Kienberger, F.; Schindler, H. Synth. Met. 2001, 125, 279.  

    17. [17]

      (17) Lagemaat, J.; Park, N. G.; Frank, A. J. J. Phys. Chem. B 2000, 104, 2044.  

    18. [18]

      (18) Hagfeldt, A.; Gr?tzel, M. Chem. Rev. 1995, 95, 49.  

    19. [19]

      (19) Chen, Y. L.; Li, D. Z.;Wu, Q. P.; Fu, X. Z.;Wang, X. X. Chem. J. Chin. Univ. 2006, 27, 340. [陈亦琳, 李旦振, 吴清萍, 付贤智, 王绪绪. 高等学校化学学报, 2006, 27, 340.]

    20. [20]

      (20) Cao, Y.; Yang,W.; Chen, Y.; Du, H.; Yue, P. Appl. Sref. Sci. 2004, 236, 223.  

    21. [21]

      (21) Zhai, X. H.; Zhao, J. Y.; Chao, H.; Cao, Y. A. Acta Phys. -Chim. Sin. 2010, 26, 1617. [翟晓辉, 赵俊岩, 巢晖, 曹亚安. 物理化学学报, 2010, 26, 1617.]

    22. [22]

      (22) Zhu,W. L.; Liu, X.W.;Wang, H.; Yu, H. J.; Li, A. Z.; Chao, H.; Zheng, K. C.; Ji, L. N. J. Lumin. 2007, 28, 510. [朱伟玲, 刘学文, 王惠, 于会娟, 黎爱珍, 巢辉, 郑康成, 计亮年. 发光学报, 2007, 28, 510.]

    23. [23]

      (23) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005, 17, 2596.  

    24. [24]

      (24) Serpone, N.; Lawless, D.; Khairutdinov, R. J. Phys. Chem. 1995, 99, 16646.  

    25. [25]

      (25) Lei, Y.; Zhang, L. D.; Meng, G.W.; Li, G. H.; Zhang, X. Y.; Liang, C. H.; Chen,W.;Wang, S. X. Appl. Phys. Lett. 2001, 78, 1125.  

    26. [26]

      (26) Li, J.; Peat, R.; Peter, L. M. J. Electroanal. Chem. 1984, 165, 41.  

    27. [27]

      (27) Huang, S. Y.; Schlichthörl, G.; Nozik, A. J.; Gratzel, M.; Frank, A. J. J. Phys. Chem. B 1997, 101, 2576.  

  • 加载中
    1. [1]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    2. [2]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    5. [5]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    6. [6]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    7. [7]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    8. [8]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    10. [10]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    11. [11]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    12. [12]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    13. [13]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    14. [14]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    15. [15]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    16. [16]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    17. [17]

      Dongmei DaiXiaobing LaiXiaojuan WangYunting YaoMengmin JiaLiang WangPengyao YanYaru QiaoZhuangzhuang ZhangBao LiDai-Huo Liu . Increasing (010) active plane of P2-type layered cathodes with hexagonal prism towards improved sodium-storage. Chinese Chemical Letters, 2024, 35(10): 109405-. doi: 10.1016/j.cclet.2023.109405

    18. [18]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    19. [19]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    20. [20]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

Metrics
  • PDF Downloads(894)
  • Abstract views(2157)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return