Citation: CHENG Hui, DONG Jiang-Zhou, CHAO Hui, YAO Jiang-Hong, CAO Ya-An. Infection of Oxygen Vacancy at the TiO2 Surface for Film Electrode Rup2P/TiO2/ITO Photo-Induced Charge Transfer[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 850-856. doi: 10.3866/PKU.WHXB2012020111 shu

Infection of Oxygen Vacancy at the TiO2 Surface for Film Electrode Rup2P/TiO2/ITO Photo-Induced Charge Transfer

  • Received Date: 2 November 2011
    Available Online: 1 February 2012

    Fund Project: 国家自然科学基金(50872056, 51072082, 21173121, 11074129)资助项目 (50872056, 51072082, 21173121, 11074129)

  • The surface properties of TiO2-X (X=5, 10, 20, X=[NaOH] (in mol·L-1)) samples prepared by modification of hydrolyzed TiCl4 were studied. The surface-sensitized Ru(phen)2(PIBH) (Rup2P) (phen= phenanthroline, PIBH=pyridyl benzimidazole hybrid) film electrodes Rup2P/TiO2-5/ITO (indium tin oxide), Rup2P/TiO2-10/ITO, and Rup2P/TiO2-20/ITO were prepared. Among the three films, the photovoltaic properties of Rup2P/TiO2-10/ITO were the best and those of Rup2P/TiO2-5/ITO were the worst. The band structures, and properties on the surfaces of Rup2P and the three TiO2 samples were analyzed using absorption spectra, surface photovoltage spectra, photoluminescence spectra, and photocurrent action spectra. The photo-induced charge transfer process was studied by cyclic voltammetry under irradiation and photocurrent action spectra. The results revealed the oxygen vacancy at the TiO2 surface was very important for the photo-induced charge transfer process of Rup2P/TiO2-X/ITO. The photocurrent mechanism of Rup2P/TiO2-X/ITO is discussed.
  • 加载中
    1. [1]

      (1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  

    2. [2]

      (2) Gratzel, M. J. Photochem. Photobiol. C-Photochem. Rev. 2003, 4, 145.  

    3. [3]

      (3) Peng, B.; Jungmann, G.; Jager, C.; Haarer, D.; Schmidt, H.; Thelakkat, M. Coord. Chem. Rev. 2004, 248, 1479.  

    4. [4]

      (4) Nazeeruddin, M. K.; Gr?tzel, M. J. Am. Chem. Soc. 2001, 123, 1613.  

    5. [5]

      (5) Wang, P.; Zakeeruddin, S. M.; Gr?tzel, M. J. Phys. Chem. B 2003, 107, 14336.  

    6. [6]

      (6) Gr?tzel, M. Nature 2001, 414, 338.  

    7. [7]

      (7) Min-Hye, K.; Young-Uk, K. J. Phys. Chem. C 2009, 113, 17176.  

    8. [8]

      (8) Zaban, A.; Zhang, J. J. Phys. Chem. B 2003, 107, 6022.  

    9. [9]

      (9) Hagfeldt, A.; Gr?tzel, M. Accounts Chem. Res. 2000, 33, 269.  

    10. [10]

      (10) Gr?tzel, M. Nature 2003, 421, 586.  

    11. [11]

      (11) Gr?tzel, M. Inorg. Chem. 2005, 44, 6841.  

    12. [12]

      (12) Kopidakis, N.; Benkstein, K. D.; Lagemaat, J.; Frank, A. J. J. Phys. Chem. B 2003, 107, 11307.

    13. [13]

      (13) Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.;Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gr?tzel, M. Nature 1998, 395, 583.  

    14. [14]

      (14) Srinivas, K.; Yesudas, K. J. Phys. Chem. C 2009, 113, 20117.  

    15. [15]

      (15) Shi, D.; Cao, Y. M. J. Phys. Chem. C 2008, 112, 17478.  

    16. [16]

      (16) Gebeyehu, D.; Brabec, C. J.; Sariciftci, N. S.; Vangeneugden, D.; Kiebooms, R.; Vanderzande, D.; Kienberger, F.; Schindler, H. Synth. Met. 2001, 125, 279.  

    17. [17]

      (17) Lagemaat, J.; Park, N. G.; Frank, A. J. J. Phys. Chem. B 2000, 104, 2044.  

    18. [18]

      (18) Hagfeldt, A.; Gr?tzel, M. Chem. Rev. 1995, 95, 49.  

    19. [19]

      (19) Chen, Y. L.; Li, D. Z.;Wu, Q. P.; Fu, X. Z.;Wang, X. X. Chem. J. Chin. Univ. 2006, 27, 340. [陈亦琳, 李旦振, 吴清萍, 付贤智, 王绪绪. 高等学校化学学报, 2006, 27, 340.]

    20. [20]

      (20) Cao, Y.; Yang,W.; Chen, Y.; Du, H.; Yue, P. Appl. Sref. Sci. 2004, 236, 223.  

    21. [21]

      (21) Zhai, X. H.; Zhao, J. Y.; Chao, H.; Cao, Y. A. Acta Phys. -Chim. Sin. 2010, 26, 1617. [翟晓辉, 赵俊岩, 巢晖, 曹亚安. 物理化学学报, 2010, 26, 1617.]

    22. [22]

      (22) Zhu,W. L.; Liu, X.W.;Wang, H.; Yu, H. J.; Li, A. Z.; Chao, H.; Zheng, K. C.; Ji, L. N. J. Lumin. 2007, 28, 510. [朱伟玲, 刘学文, 王惠, 于会娟, 黎爱珍, 巢辉, 郑康成, 计亮年. 发光学报, 2007, 28, 510.]

    23. [23]

      (23) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005, 17, 2596.  

    24. [24]

      (24) Serpone, N.; Lawless, D.; Khairutdinov, R. J. Phys. Chem. 1995, 99, 16646.  

    25. [25]

      (25) Lei, Y.; Zhang, L. D.; Meng, G.W.; Li, G. H.; Zhang, X. Y.; Liang, C. H.; Chen,W.;Wang, S. X. Appl. Phys. Lett. 2001, 78, 1125.  

    26. [26]

      (26) Li, J.; Peat, R.; Peter, L. M. J. Electroanal. Chem. 1984, 165, 41.  

    27. [27]

      (27) Huang, S. Y.; Schlichthörl, G.; Nozik, A. J.; Gratzel, M.; Frank, A. J. J. Phys. Chem. B 1997, 101, 2576.  

  • 加载中
    1. [1]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    2. [2]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    3. [3]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    4. [4]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    5. [5]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    6. [6]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    9. [9]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    10. [10]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    13. [13]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    14. [14]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    15. [15]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    17. [17]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    18. [18]

      Lizhang Chen Yu Fang Mingxin Pang Ruoxu Sun Lin Xu Qixing Zhou Yawen Tang . Interfacial engineering of core/satellite-structured RuP/RuP2 heterojunctions for enhanced pH-universal hydrogen evolution reaction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100461-100461. doi: 10.1016/j.cjsc.2024.100461

    19. [19]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    20. [20]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

Metrics
  • PDF Downloads(894)
  • Abstract views(2217)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return