Citation: GAO Yue-Jun, XU Yi-Ming. Effect of Fluoride Doping and Adsorption on the Photocatalytic Activity of TiO2[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 641-646. doi: 10.3866/PKU.WHXB201201161 shu

Effect of Fluoride Doping and Adsorption on the Photocatalytic Activity of TiO2

  • Received Date: 25 September 2011
    Available Online: 16 January 2012

    Fund Project: 国家自然科学基金(20873124) (20873124)国家基础研究发展计划(973) (2011CB936003)资助项目 (973) (2011CB936003)

  • It has been reported that bulk doping or surface modification of TiO2 with fluoride ions can enhance its photocatalytic activity for degradation of organic compounds in water. The effect of the former is ascribed to enhanced separation of photogenerated charge carriers through the surface-formed Ti3 + species, whereas that of the latter is ascribed to enhanced desorption of hydroxyl radicals through the interfacial fluoride ions. However, the difference in activity between two modified catalysts has not been investigated. In this work, different fluoride-doped samples were hydrothermally prepared from butyl titanate and NH4F. Their photocatalytic activities after addition of NaF or AgNO3 to the aqueous suspension were evaluated using phenol degradation as a model reaction. All the fluoride ions in the oxide lattices and in the outer and inner Helmholtz double layers of TiO2 were positive to phenol degradation, but the magnitude of their influences followed a decreasing order. Moreover, phenol degradation in the presence of both NaF and AgNO3 was much faster than the sum of their individual rates. These results indicate that combination of conduction band electron reduction and valence band hole oxidation is an effective way to improve the quantum yield of TiO2 photocatalysis.
  • 加载中
    1. [1]

      (1) Xu, Y. M. Prog. Chem. 2009, 21 (2-3), 524. [许宜铭. 化学进展, 2009, 21 (2-3), 524.]

    2. [2]

      (2) Thompson, T. L.; Yates, J. T. Chem. Rev. 2006, 106, 4428.  

    3. [3]

      (3) Carp, O.; Huisman, C. L.; Reller, A. Prog. Solid State Chem. 2004, 3, 33.

    4. [4]

      (4) Hoffmann, M. R.; Martin, S. T.; Choi,W.; Bahnemann, D.W. Chem. Rev. 1995, 95, 69.  

    5. [5]

      (5) Emeline, A. V.; Zhang, X.; Jin, M.; Murakami, T.; Fujishima, A. J. Phys. Chem. B 2006, 110, 7409.  

    6. [6]

      (6) Minero, C.; Mariella, G.; Maurino, V.; Pelizzetti, E. Langmuir 2000, 16, 2632.  

    7. [7]

      (7) Minero, C.; Mariella, G.; Maurino, V.; Vione, D.; Pelizzetti, E. Langmuir 2000, 16, 8964.  

    8. [8]

      (8) Mrowetz, M.; Selli, E. Phys. Chem. Chem. Phys. 2005, 7, 1100.

    9. [9]

      (9) Mrowetz, M.; Selli, E. New J. Chem. 2006, 30, 108.  

    10. [10]

      (10) Park, H.; Choi,W. J. Phys. Chem. B 2004, 108, 4086.  

    11. [11]

      (11) Lee, J.; Choi,W.; Yoon, J. Environ. Sci. Technol. 2005, 39, 6800.  

    12. [12]

      (12) Park, H.; Choi,W. Catal. Today 2005, 101, 291.  

    13. [13]

      (13) Kim, H.; Choi,W. Appl. Catal. B 2006, 69, 127.

    14. [14]

      (14) Janczyk, A.; Krakowska, E.; Stochel, G.; Macyk,W. J. Am. Chem. Soc. 2006, 128, 15574.  

    15. [15]

      (15) Jiang, J. J.; Long, M. C;Wu, D. Y.; Cai,W. M. Acta Phys. -Chim. Sin. 2011, 27 (5), 1149. [蒋晶晶, 龙明策, 吴德勇, 蔡伟民. 物理化学学报, 2011, 27 (5), 1149.]

    16. [16]

      (16) Lv, K. L.; Xu, Y. M. J. Phys. Chem. B 2006, 110, 6204.  

    17. [17]

      (17) Xu, Y. M.; Lv, K. L.; Xiong, Z. G.; Leng,W. H.; Du,W. P.; Liu, D.; Xue, X. J. J. Phys. Chem. C 2007, 111, 19024.  

    18. [18]

      (18) Yu, J. M.; Yu, J. G.; Ho,W. K.; Jiang, Z. T.; Zhang, L. Z. Chem. Mater. 2002, 14, 3808.  

    19. [19]

      (19) Ho,W. K.; Yu, J. C.; Lee, S. C. Chem. Commun. 2006, 1115.  

    20. [20]

      (20) Czoska, A. M.; Livraghi, S.; Chiesa, M.; Giamello, E.; Agnoli, S.; Granozzi, G.; Finazzi, E.; Valentin, C. D.; Pacchioni, G. J. Phys. Chem. C 2008, 112, 8951.  

    21. [21]

      (21) Cave, G. C.; Hume, D. N. Anal. Chem. 1952, 24, 1503.  

    22. [22]

      (22) Li, D.; Haneda, H.; Labhsetwar, N. K.; Hishita, S.; Ohashi, N. Chem. Phys. Lett. 2005, 401, 579.  

    23. [23]

      (23) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N.; Labhsetwar, N. K. J. Fluorine Chem. 2005, 126, 69.  

    24. [24]

      (24) Lv, K. L.; Xiang, Q. J.; Yu, J. G. Appl. Catal. B 2011, 104, 275.  

    25. [25]

      (25) Grela, M. A.; Coronel, M. E. J.; Colussi, A. J. J. Phys. Chem. 1996, 100, 16940.

    26. [26]

      (26) Cong, S.; Xu, Y. M. J. Hazard. Mater. 2011, 192, 485.  

    27. [27]

      (27) Sun, Q.; Xu, Y. M. J. Phys. Chem C 2010, 114, 18911.  

    28. [28]

      (28) Wang, C. M.; Mallouk, T. E. J. Phys. Chem. 1990, 94, 4276.  

    29. [29]

      (29) Cheng, X. F.; Leng,W. H.; Liu, D. P.; Xu, Y. M.; Zhang, J. Q.; Cao, C. N. J. Phys. Chem C 2008, 112, 8725.  

  • 加载中
    1. [1]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    6. [6]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    7. [7]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    13. [13]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    15. [15]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(1213)
  • Abstract views(3409)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return