Citation: XU Zou-Ming, WANG Yu-Xia, DAI Peng, KONG Wei-Quan. Efficient Blue Emission from Small-Molecule Organosilicon Monomer N-(3-Trimethoxysilylethyl)ethylenediamine[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 733-738. doi: 10.3866/PKU.WHXB201201131 shu

Efficient Blue Emission from Small-Molecule Organosilicon Monomer N-(3-Trimethoxysilylethyl)ethylenediamine

  • Received Date: 26 October 2011
    Available Online: 13 January 2012

    Fund Project: 国家自然科学基金(5067095)资助项目 (5067095)

  • We investigated the electronic structure, photophysical properties, and thermal stability of N- (3-trimethoxysilylethyl)ethylenediamine (TMSEEDA). The optimized structural parameters in the ground state and first excited state were obtained from density functional theory calculations. The results showed that there was probably π electron delocalization within the Si-O skeleton, which induced the long wavelength absorption. A broad and intense blue emission with a maximum at 430 nm was observed for both the solution and the solid state with 270 nm excitation at room temperature. The absorption intensity for the solid state was five-times that of the pure TMSEEDA. For the ethanol solution, the photoluminescence intensity increased with increasing concentration of TMSEEDA and reached a maximum at a concentration of 100%. These results suggest there is no concentration quenching for TMSEEDA. An accepted model of electron delocalization and d-p π-bonding within the Si-O skeleton was applied to explain the long wavelength absorption and blue emission.
  • 加载中
    1. [1]

      (1) Ponomarenko, S. A.; Kirchmeyer, S. Conjugated Organosilicon Materials for Organic Electronics and Photonics; Springer- Verlag: Berlin, 2011; pp 33-45.

    2. [2]

      (2) Chen, J.W.; Cao, Y. Macromol. Rapid Commun. 2007, 28, 1714.  

    3. [3]

      (3) Chen, Z. K.; Huang,W.;Wang, L. H.; Kang, E. T.; Chen, B. J.; Lee, C. S.; Lee, S. T. Macromolecules 2000, 33, 9015.  

    4. [4]

      (4) Kim, H. K.; Ryu, M. K.; Kim, K. D.; Lee, S. M.; Cho, S.W.; Park, J.W. Macromolecules 1998, 31, 1114.  

    5. [5]

      (5) Kim, K. D.; Park, J. S.; Kim, H. K.; Lee, T. B.; No, K. T. Macromolecules 1998, 31, 7267.  

    6. [6]

      (6) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1990, 56, 799.  

    7. [7]

      (7) Friend, R. H.; Gymer, R.W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.;Salaneck,W. R. Nature 1999, 397, 121.  

    8. [8]

      (8) Zhao, Y. L.; Duan, L.; Qiao, J.; Zhang, D. Q.;Wang, L. D.; Qiu, Y. Acta Phys. -Chim. Sin. 2010, 26, 531. [赵云龙, 段炼, 乔娟, 张德强, 王立铎, 邱勇. 物理化学学报, 2010, 26, 531.]

    9. [9]

      (9) Samuel, I. D.W.; Turnbull, G. A. Chem. Rev. 2007, 107, 1272.  

    10. [10]

      (10) Sreejith, S.; Divya, K. P.; Ajayaghosh, A. Chem. Commun. 2008, 2903.

    11. [11]

      (11) Hains, A.W.; Liang, Z. Q.;Woodhouse, M. A.;Gregg, B. A. Chem. Rev. 2010, 110, 6689.  

    12. [12]

      (12) Duan, L. A.; Hou, L. D.; Lee, T.W.; Qiao, J. A.; Zhang, D. Q.; Dong, G. F.;Wang, L. D.; Qiu, Y. J. Mater. Chem. 2010, 20, 6392.  

    13. [13]

      (13) Jakubiak, R.; Collison, C. J.;Wan,W. C.; Rothberg, L. J.; Hsieh, B. R. J. Phys. Chem. A 1999, 103, 2394.  

    14. [14]

      (14) Shimizu, M.; Hiyama, T. Chem. Asian J. 2010, 5, 1516.  

    15. [15]

      (15) Smith, R. C.; Gleason, L. B.; Protasiewicz, J. D. J. Mater. Chem. 2006, 16, 2445.  

    16. [16]

      (16) Yan, D. C.; Thomson, M. D.; Backer, M.; Bolte, M.; Hahn, R.; Berger, R.; Fann,W.; Roskos, H. G.; Auner, N. Chem. Eur. J. 2009, 15, 8625.  

    17. [17]

      (17) Yamaguchi, S.; Xu, C.; Yamada, H.;Wakamiya, A. J. Organomet. Chem. 2005, 690, 5365.  

    18. [18]

      (18) Liu, J. N.; Chen, Z. R.; Yuan, S. F. Acta Phys. -Chim. Sin. 2005, 21, 402. [刘军娜, 陈志荣, 袁慎峰. 物理化学学报, 2005, 21, 402.]

    19. [19]

      (19) Zhan,W. S.; Pan, S.;Wang, Q.; Li, H.; Zhang, Y. Acta Phys. -Chim. Sin. 2012, 28, 78. [詹卫伸, 潘石, 王乔, 李宏, 张毅. 物理化学学报, 2012, 28, 78.]

    20. [20]

      (20) Zhao, G. J.; Han, K. L. J. Phys. Chem. A 2007, 111, 2469.  

    21. [21]

      (21) Ren, Y. L.;Wan, J.; Liu, J. J.;Wan, H.W. Acta Phys. -Chim. Sin. 2004, 20, 1089. [任彦亮, 万坚, 刘俊军, 万洪文. 物理化学学报, 2004, 20, 1089.]

    22. [22]

      (22) Song, Z. L.; Zhang, F. S.; Chen, X. Q.; Zhao, F. Q. Acta Phys. -Chim. Sin. 2003, 19, 130. [宋争林, 张复实, 陈锡侨, 赵福群. 物理化学学报, 2003, 19, 130.]

    23. [23]

      (23) Becke, A. D. J. Phys. Chem. 1993, 98, 5648.  

    24. [24]

      (24) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  

    25. [25]

      (25) Boronat, M.; Corma, A. Phys. Chem. Phys. Chem. 1999, 1, 537.

    26. [26]

      (26) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.02; Gaussian Inc.: Pittsburgh, PA, 2003.

    27. [27]

      (27) Newton, M. D.; Gibbs, G. V. Phys. Chem. Miner. 1980, 6, 221.  

    28. [28]

      (28) Wetzel, D. M.; Brauman, J. I. J. Am. Chem. Soc. 1988, 110, 8333.  

    29. [29]

      (29) Apeloig, Y.; Karni, M. J. Am. Chem. Soc. 1984, 106, 6676.  

    30. [30]

      (30) Olsson, L.; Ottosson, C. H.; Cremer, D. J. Am. Chem. Soc. 1995, 117, 7460.  

    31. [31]

      (31) Pauling, L. J. Phys. Chem. 1952, 56, 361.  

    32. [32]

      (32) Jaffe, H. H. J. Phys. Chem. 1954, 58, 185.  

    33. [33]

      (33) Janes, N.; Oldfield, E. J. Am. Chem. Soc. 1986, 108, 5743.  

    34. [34]

      (34) Cheng,W. D.; Guo, G. C.; Huang, J. S.; Lu, J. X. Polyhedron 1995, 14, 3649.  

    35. [35]

      (35) Furche, F. Annual Reports in Computational Chemistry. Elsevier: Amsterdam, 2005; pp 19-30.

    36. [36]

      (36) Feng,W. K.; Kong, S.; Xiao, L. X.;Wang, S. F.; ng, Q. H. Acta Phys. -Chim. Sin. 2010, 26, 1929. [冯文科, 孔胜, 肖立新, 王树峰, 龚旗煌. 物理化学学报, 2010, 26, 1929.]

    37. [37]

      (37) Birks, J. B.; Christophorou, L. G. Proc. R. Soc. London, Ser. A 1964, 277, 571.  

    38. [38]

      (38) Jeguirim, M.; Dorge, S.; Trouve, G. Bioresour. Technol. 2010, 101, 788.  

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    4. [4]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    5. [5]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    8. [8]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    9. [9]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    10. [10]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    11. [11]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    12. [12]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    13. [13]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    14. [14]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    15. [15]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    16. [16]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    17. [17]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    18. [18]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    19. [19]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    20. [20]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

Metrics
  • PDF Downloads(675)
  • Abstract views(2235)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return