Citation: ZHANG Rong-Rong, QIN Chao-Chao, LONG Jin-You, YANG Ming-Hui, ZHANG Bing. Ultrafast Predissociation Dynamics of Excited State of Acrylic Acid[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 522-527. doi: 10.3866/PKU.WHXB201201122 shu

Ultrafast Predissociation Dynamics of Excited State of Acrylic Acid

  • Received Date: 23 November 2011
    Available Online: 12 January 2012

    Fund Project: 国家自然科学基金(20903116) (20903116)中国科学院知识创新基金(KJCX1-YW-N30)资助项目 (KJCX1-YW-N30)

  • The ultrafast predissociation dynamics of acrylic acid after excitation to the second electronically excited state (S2) with a 200 nm pump pulse were studied using a femtosecond pump-probe technique combined with time-of-flight mass spectroscopy (TOF-MS). The time-resolved mass spectra signals of the parent ion and fragment ions were collected. By using the kinetic equations to fit and analyze the time-resolved mass spectra ion signals, the existence of the predissociation channel was revealed. The excited molecule populated in the S2 state decayed to the first electronically excited state (S1) through a fast internal conversion process over a period of 210 fs. The excited molecule populated on the S1 state then decayed to the vibrationally hot ground state (S0) through another internal conversion process over a period of 1.49 ps. Finally, on the vibrationally hot ground state surface, the molecule dissociated to the neutral fragments, H2C=CH and HOCO, H2C=CHCO and OH via C-C bond fission and C-O bond fission, respectively. The corresponding predissociation time constants were determined to be approximately 4 and 3 ps, respectively. The generation of fragment ions can occur in two ways, both from the dissociation of the parent ion and the ionization of the neutral fragments on the vibrationally hot ground state surface.
  • 加载中
    1. [1]

      (1) Zewail, A. H. J. Phys. Chem. A 2000, 104, 5660.  

    2. [2]

      (2) Bernardi, F.; Olivucci, M. M.; Robb, M. A. Chem. Soc. Rev. 1996, 25, 321.  

    3. [3]

      (3) Schwalb, N. K.; Temps, F. J. Am. Chem. Soc. 2007, 129, 9272.  

    4. [4]

      (4) Kwok,W. M.; Ma, C. S.; Phillips, D. L. J. Am. Chem. Soc. 2008, 130, 5131.  

    5. [5]

      (5) Fork, R. L.; Greene, B. I.; Shank, C. V. Appl. Phys. Lett. 1981, 38, 671.  

    6. [6]

      (6) Zewail, A. H. Angew. Chem. Int. Edit. Engl. 2000, 39, 2586.  

    7. [7]

      (7) Domcke,W.; Stock, G. Adv. Chem. Phys. 1997, 100, 1.  

    8. [8]

      (8) Lee, A. M. D.; Coe, J. D.; Ullrich, S.; Ho, M. L.; Lee, S. J.; Cheng, B. M.; Zgierski, M. Z.; Chen, I. C.; Martinez, T. J.; Stolow, A. J. Phys. Chem. A 2007, 111, 11948.  

    9. [9]

      (9) Osborne, M. C.; Li, Q.; Smith, I.W. M. Phys. Chem. Chem. Phys. 1999, 1, 1447.

    10. [10]

      (10) Arendt, M. F.; Browning, P.W.; Butler, L. J. J. Chem. Phys. 1995, 103, 5877.  

    11. [11]

      (11) Singleton, D. L.; Paraskevopoulos, G.; Irwin, R. S. J. Phys. Chem. 1990, 94, 695.  

    12. [12]

      (12) Rosenfeld, R. N.;Weiner, B. R. J. Am. Chem. Soc. 1983, 105, 6233.  

    13. [13]

      (13) Upadhyaya, H. P.; Kumar, A.; Naik, P. D.; Sapre, A. V.; Mittal, J. P. J. Chem. Phys. 2002, 117, 10097.  

    14. [14]

      (14) Reguero, M.; Olivucci, M.; Bernardi, F.; Robb, M. A. J. Am. Chem. Soc. 1994, 116, 2103.  

    15. [15]

      (15) Fang,W. H. J. Am. Chem. Soc. 1999, 121, 8376.  

    16. [16]

      (16) Aquilante, F.; Barone, V.; Roos, B. O. J. Chem. Phys. 2003, 119, 12323.  

    17. [17]

      (17) Kitchen, D. C.; Forde, N. R.; Butler, L. J. J. Phys. Chem. A 1997, 101, 6603.  

    18. [18]

      (18) Forman, R. L.; MacKinnon, H. M.; Ritchie, P. D. J. Chem. Soc. C 1968, 2013.

    19. [19]

      (19) Miyoshi, A.; Matsui, H.;Washida, N. J. Chem. Phys. 1994, 100, 3532.  

    20. [20]

      (20) Ruelle, P. J. Comput. Chem. 1987, 8, 158.  

    21. [21]

      (21) Fang,W. H. Chem. Phys. Lett. 2000, 325, 683.  

    22. [22]

      (22) Fang,W. H.; Liu, R. Z. J. Am. Chem. Soc. 2000, 122, 10886.  

    23. [23]

      (23) Wei, Z. R.; Zhang, F.;Wang, Y. M.; Zhang, B. Chin. J. Chem. Phys. 2007, 20, 419. [魏振荣, 张峰, 王艳梅, 张冰. 化学物理学报, 2007, 20, 419.]  

    24. [24]

      (24) Chen, Y.; Zhang, C. H.; Cao, Z. Z.; Zhang, B. Acta Phys. -Chim. Sin. 2008, 24, 844. [陈荫, 张昌华, 曹振洲, 张冰. 物理化学学报, 2008, 24, 844.]

    25. [25]

      (25) Zhang, F.; Cao, Z. Z.; Qin, X.; Liu, Y. Z.;Wang, Y. M.; Zhang, B. Acta Phys. -Chim. Sin. 2008, 24, 1335. [张锋, 曹振洲, 覃晓, 刘玉柱, 王艳梅, 张冰. 物理化学学报, 2008, 24, 1335.]  

    26. [26]

      (26) Wang, Y. M.; Zhang, S.;Wei, Z. R.; Zhang, B. Chem. Phys. Lett. 2009, 468, 14.  

    27. [27]

      (27) Katrib, A.; Rabalais, J.W. J. Phys. Chem. 1973, 77, 2358.  

    28. [28]

      (28) Turro, N. J. Modern Molecular Photochemistry; Benjamin/ Cummings: Menlo Park, 1978.

  • 加载中
    1. [1]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    4. [4]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    5. [5]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    11. [11]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    15. [15]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    16. [16]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    17. [17]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    20. [20]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

Metrics
  • PDF Downloads(1108)
  • Abstract views(2153)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return