Citation: ZHANG Rong-Rong, QIN Chao-Chao, LONG Jin-You, YANG Ming-Hui, ZHANG Bing. Ultrafast Predissociation Dynamics of Excited State of Acrylic Acid[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 522-527. doi: 10.3866/PKU.WHXB201201122
-
The ultrafast predissociation dynamics of acrylic acid after excitation to the second electronically excited state (S2) with a 200 nm pump pulse were studied using a femtosecond pump-probe technique combined with time-of-flight mass spectroscopy (TOF-MS). The time-resolved mass spectra signals of the parent ion and fragment ions were collected. By using the kinetic equations to fit and analyze the time-resolved mass spectra ion signals, the existence of the predissociation channel was revealed. The excited molecule populated in the S2 state decayed to the first electronically excited state (S1) through a fast internal conversion process over a period of 210 fs. The excited molecule populated on the S1 state then decayed to the vibrationally hot ground state (S0) through another internal conversion process over a period of 1.49 ps. Finally, on the vibrationally hot ground state surface, the molecule dissociated to the neutral fragments, H2C=CH and HOCO, H2C=CHCO and OH via C-C bond fission and C-O bond fission, respectively. The corresponding predissociation time constants were determined to be approximately 4 and 3 ps, respectively. The generation of fragment ions can occur in two ways, both from the dissociation of the parent ion and the ionization of the neutral fragments on the vibrationally hot ground state surface.
-
- [1]
-
[2]
(2) Bernardi, F.; Olivucci, M. M.; Robb, M. A. Chem. Soc. Rev. 1996, 25, 321.
-
[3]
(3) Schwalb, N. K.; Temps, F. J. Am. Chem. Soc. 2007, 129, 9272.
-
[4]
(4) Kwok,W. M.; Ma, C. S.; Phillips, D. L. J. Am. Chem. Soc. 2008, 130, 5131.
-
[5]
(5) Fork, R. L.; Greene, B. I.; Shank, C. V. Appl. Phys. Lett. 1981, 38, 671.
-
[6]
(6) Zewail, A. H. Angew. Chem. Int. Edit. Engl. 2000, 39, 2586.
- [7]
-
[8]
(8) Lee, A. M. D.; Coe, J. D.; Ullrich, S.; Ho, M. L.; Lee, S. J.; Cheng, B. M.; Zgierski, M. Z.; Chen, I. C.; Martinez, T. J.; Stolow, A. J. Phys. Chem. A 2007, 111, 11948.
-
[9]
(9) Osborne, M. C.; Li, Q.; Smith, I.W. M. Phys. Chem. Chem. Phys. 1999, 1, 1447.
-
[10]
(10) Arendt, M. F.; Browning, P.W.; Butler, L. J. J. Chem. Phys. 1995, 103, 5877.
-
[11]
(11) Singleton, D. L.; Paraskevopoulos, G.; Irwin, R. S. J. Phys. Chem. 1990, 94, 695.
-
[12]
(12) Rosenfeld, R. N.;Weiner, B. R. J. Am. Chem. Soc. 1983, 105, 6233.
-
[13]
(13) Upadhyaya, H. P.; Kumar, A.; Naik, P. D.; Sapre, A. V.; Mittal, J. P. J. Chem. Phys. 2002, 117, 10097.
-
[14]
(14) Reguero, M.; Olivucci, M.; Bernardi, F.; Robb, M. A. J. Am. Chem. Soc. 1994, 116, 2103.
- [15]
-
[16]
(16) Aquilante, F.; Barone, V.; Roos, B. O. J. Chem. Phys. 2003, 119, 12323.
-
[17]
(17) Kitchen, D. C.; Forde, N. R.; Butler, L. J. J. Phys. Chem. A 1997, 101, 6603.
-
[18]
(18) Forman, R. L.; MacKinnon, H. M.; Ritchie, P. D. J. Chem. Soc. C 1968, 2013.
-
[19]
(19) Miyoshi, A.; Matsui, H.;Washida, N. J. Chem. Phys. 1994, 100, 3532.
- [20]
-
[21]
(21) Fang,W. H. Chem. Phys. Lett. 2000, 325, 683.
-
[22]
(22) Fang,W. H.; Liu, R. Z. J. Am. Chem. Soc. 2000, 122, 10886.
-
[23]
(23) Wei, Z. R.; Zhang, F.;Wang, Y. M.; Zhang, B. Chin. J. Chem. Phys. 2007, 20, 419. [魏振荣, 张峰, 王艳梅, 张冰. 化学物理学报, 2007, 20, 419.]
-
[24]
(24) Chen, Y.; Zhang, C. H.; Cao, Z. Z.; Zhang, B. Acta Phys. -Chim. Sin. 2008, 24, 844. [陈荫, 张昌华, 曹振洲, 张冰. 物理化学学报, 2008, 24, 844.]
-
[25]
(25) Zhang, F.; Cao, Z. Z.; Qin, X.; Liu, Y. Z.;Wang, Y. M.; Zhang, B. Acta Phys. -Chim. Sin. 2008, 24, 1335. [张锋, 曹振洲, 覃晓, 刘玉柱, 王艳梅, 张冰. 物理化学学报, 2008, 24, 1335.]
-
[26]
(26) Wang, Y. M.; Zhang, S.;Wei, Z. R.; Zhang, B. Chem. Phys. Lett. 2009, 468, 14.
-
[27]
(27) Katrib, A.; Rabalais, J.W. J. Phys. Chem. 1973, 77, 2358.
-
[28]
(28) Turro, N. J. Modern Molecular Photochemistry; Benjamin/ Cummings: Menlo Park, 1978.
-
-
[1]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[2]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[3]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[4]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[5]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[6]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[7]
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
-
[8]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[9]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[10]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[11]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[12]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[13]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[14]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[15]
Yang YANG , Pengcheng LI , Zhan SHU , Nengrong TU , Zonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440
-
[16]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[17]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[18]
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
-
[19]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[20]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[1]
Metrics
- PDF Downloads(1108)
- Abstract views(2101)
- HTML views(37)