Citation: XU Fei-Yan, LIU Li-Jun, QIN Jian, LIU Bei, MEI Shuang. Solution-Phase Synthesis of Superhydrophobic Copper Surface with Dual Scale Roughness[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 693-698. doi: 10.3866/PKU.WHXB201201111 shu

Solution-Phase Synthesis of Superhydrophobic Copper Surface with Dual Scale Roughness

  • Received Date: 4 November 2011
    Available Online: 11 January 2012

    Fund Project: 中国纺织工业协会(2011054)资助项目 (2011054)

  • A copper sulfide film with dual scale micro- and nano-structured roughness was constructed on copper foil via a facile solution-phase method using the sodium thiosulphate and cupric chloride as raw materials. The resulting film was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectrometer, and contact angle measurements. After stearic acid hydrophobization, the film exhibited a water contact angle of 161° and a sliding angle of 2.5° for a 5 μL water droplet. The superhydrophobicity was attributed to a combination of the dual scale roughness at the micro- and nano-meter levels and the low surface energy of the stearic acid coating. This is a simple synthetic methodology requiring no complex or harsh equipment. The copper surface obtained has the excellent non-sticking property, long-term storage stability, and relatively od anti-abrasion property.
  • 加载中
    1. [1]

      (1) Zhao, N.; Lu, X. Y.; Zhang, X. Y.; Liu, H. Y.; Tan, S. X.; Xu, J. Prog. Chem. 2007, 19, 860. [赵宁, 卢晓英, 张晓艳, 刘海云, 谭帅霞, 徐坚. 化学进展, 2007, 19, 860.]

    2. [2]

      (2) Liu, K. S.; Jiang, L. Nanoscale 2011, 3, 825.  

    3. [3]

      (3) Feng, X. Q.; Gao, X. F.;Wu, Z. N.; Jiang, L.; Zheng, Q. S. Langmuir 2007, 23, 4892.  

    4. [4]

      (4) Liu, K. S.; Yao, X.; Jiang, L. Chem. Soc. Rev. 2010, 39, 3240.  

    5. [5]

      (5) Li, S. M.; Zhou, S. Z.; Liu, J. H. Acta Phys. -Chim. Sin. 2009, 25, 2581. [李松梅, 周思卓, 刘建华. 物理化学学报, 2009, 25, 2581.]

    6. [6]

      (6) Liu, M. J.; Zheng, Y. M.; Zhai, J.; Jiang, L. Accounts Chem. Res. 2010, 43, 368.  

    7. [7]

      (7) Li, S. M.;Wang, Y. G.; Liu, J. H.;Wei,W. Acta Phys. -Chim. Sin. 2007, 23, 1631. [李松梅, 王勇干, 刘建华, 韦巍. 物理化学学报, 2007, 23, 1631.]

    8. [8]

      (8) Zhou, Y. L.; Li, M.; Su, B.; Lu, Q. H. J. Mater. Chem. 2009, 19, 3301.  

    9. [9]

      (9) Bhushan, B.; Jung, Y. C.; Koch, K. Langmuir 2009, 25, 3240.  

    10. [10]

      (10) Shirtcliffe, N. J.; McHale, G.; Newton, M. I.; Zhang, Y. ACS Appl. Mater. Interfaces 2009, 1, 1316.  

    11. [11]

      (11) Zhou, M.; Li, J.; Feng, C. C.;Wu, C. X.; Yuan, R.; Cai, L. Chem. Vap. Deposition 2010, 16, 12.  

    12. [12]

      (12) Liu, C. S.; Jiang,W. Q.; Guan, Z. S. Chem. J. Chin. Univ. 2011, 32, 1175. [刘传生, 蒋文曲, 管自生. 高等学校化学学报, 2011, 32, 1175.]

    13. [13]

      (13) Liu, L. J.; Zhao, J. S.; Zhang, Y.; Zhao, F.; Zhang, Y. B. J. Colloid Interface Sci. 2011, 358, 277.  

    14. [14]

      (14) Zhou, Q. H.; Yu, X. Q.; Zhang, Y. F.; Li, K. N.; Chen, F.; Gu, Z. Z. Chem. J. Chin. Univ. 2010, 31, 456. [周荃卉, 余新泉, 张友法, 李康宁, 陈锋, 顾忠泽. 高等学校化学学报, 2010, 31, 456.]

    15. [15]

      (15) Lakshmi, R. V.; Basu, B. J. J. Colloid Interface Sci. 2009, 339, 454.  

    16. [16]

      (16) Di, Z. Y.; He, J. P.; Zhou, J. H.; Sun, D.;Wang, T. J. Inorg. Mater. 2010, 25, 765. [狄志勇, 何建平, 周建华, 孙盾, 王涛. 无机材料学报, 2010, 25, 765.]  

    17. [17]

      (17) Ma, M. L.; Hill, R. M. Curr. Opin. Colloid Interface Sci. 2006, 11, 193.  

    18. [18]

      (18) Sun, T. L.; Feng, L.; Gao, X. F.; Jiang, L. Accounts Chem. Res. 2005, 38, 644.  

    19. [19]

      (19) Zhong, M. Q.; Zheng, J. Y.; Feng, J. Chem. J. Chin. Univ. 2010, 31, 2511. [钟明强, 郑建勇, 冯杰. 高等学校化学学报, 2010, 31, 2511.]

    20. [20]

      (20) Pan, Q. M.; Liu, J.; Zhu, Q. ACS Appl. Mater. Interfaces 2010, 2, 2026.  

    21. [21]

      (21) Milosev, I.; Kosec, T.; Bele, M. J. Appl. Electrochem. 2010, 40, 1317.  

    22. [22]

      (22) Xi, J. M.; Feng, L.; Jiang, L. Appl. Phys. Lett. 2008, 92, 053102.  

    23. [23]

      (23) Wang, S. T.; Feng, L.; Jiang, L. Adv. Mater. 2006, 18, 767.  

    24. [24]

      (24) Zhao, Y. S.; Yang,W. S.; Zhang, G. J.; Ma, Y.; Yao, J. N. Colloids Surf. A 2006, 277, 111.  

    25. [25]

      (25) Qu, M. N.; Zhang, B.W.; Song, S. Y.; Chen, L.; Zhang, J. Y.; Cao, X. P. Adv. Funct. Mater. 2007, 17, 593.  

    26. [26]

      (26) Wu,W. C.; Chen, M.; Liang, S.;Wang, X. L.; Chen, J. M.; Zhou, F. J. Colloid Interface Sci. 2008, 326, 478.  

    27. [27]

      (27) Zhang, Y. F.; Yu, X. Q.; Zhou, Q. H.; Chen, F.; Li, K. N. Appl. Surf. Sci. 2010, 256, 1883.  

    28. [28]

      (28) Guo, Z. G.; Liu,W. M.; Su, B. L. Appl. Phys. Lett. 2008, 92, 063104.  

    29. [29]

      (29) Qian, B. T.; Shen, Z. Q. J. Inorg. Mater. 2006, 21, 747. [钱柏太, 沈自求. 无机材料学报, 2006, 21, 747.]

    30. [30]

      (30) Chen, X. H.; Kong, L. H.; Dong, D.; Yang, G. B.; Yu, L. G.; Chen, J. M.; Zhang, P. Y. Appl. Surf. Sci. 2009, 255, 4015.  

    31. [31]

      (31) Yao, X.; Chen, Q.W.; Xu, L.; Li, Q. K.; Song, Y. L.; Gao, X. F.; Quere, D.; Jiang, L. Adv. Funct. Mater. 2010, 20, 656.  

    32. [32]

      (32) Chen, X. H.; Kong, L. H.; Dong, D.; Yang, G. B.; Yu, L. G.; Chen, J. M.; Zhang, P. Y. J. Phys. Chem. C 2009, 113, 5396.  

    33. [33]

      (33) Chen, X. H.; Yang, G. B.; Kong, L. H.; Dong, D.; Yu, L. G.; Chen, J. M.; Zhang, P. Y. Cryst. Growth Des. 2009, 9, 2656.  

    34. [34]

      (34) Yao, X.; Xu, L.; Jiang, L. Adv. Funct. Mater. 2010, 20, 3343.  

    35. [35]

      (35) Wang, S.; Feng, L.; Liu, H.; Sun, T.; Zhang, X.; Jiang, L.; Zhu, D. ChemPhysChem 2005, 6, 1475.  

    36. [36]

      (36) Xu, X. H.; Zhang, Z. Z.; Liu,W. M. J. Dispersion Sci. Technol. 2010, 31, 488.  

    37. [37]

      (37) Guo, Z. G.; Han, F. B.;Wang, L. B.; Liu,W. M. Thin Solid Films 2007, 515, 7190.  

    38. [38]

      (38) Liu, L. J.; Guan, J. G.; Shi,W. D.; Sun, Z. G.; Zhao, J. S. J. Phys. Chem. C 2010, 114, 13565.

    39. [39]

      (39) Guan, J. G.; Liu, L. J.; Xu, L. L.; Sun, Z. G.; Zhang, Y. CrystEngComm 2011, 13, 2636.  

    40. [40]

      (40) Marmur, A. Langmuir 2004, 20, 3517.  

    41. [41]

      (41) Wang, S.; Jiang, L. Adv. Mater. 2007, 19, 3423.  

    42. [42]

      (42) Balu, B.; Breedveld, V.; Hess, D.W. Langmuir 2008, 24, 4785.  

    43. [43]

      (43) Feng, L.; Li, S. H.; Li, Y. S.; Li, H. J.; Zhang, L. J.; Zhai, J.; Song, Y. L.; Liu, B. Q.; Jiang, L.; Zhu, D. B. Adv. Mater. 2002, 14, 1857.  

    44. [44]

      (44) Gao, L. C.; McCarthy, T. J. Langmuir 2006, 22, 6234.  

    45. [45]

      (45) Qian, Z.; Zhang, Z. C.; Song, L. Y.; Liu, H. R. J. Mater. Chem. 2009, 19, 1297.  

    46. [46]

      (46) Gao, L. C.; McCarthy, T. J. J. Am. Chem. Soc. 2006, 128, 9052.  

    47. [47]

      (47) Xiu, Y.; Liu, Y.; Hess, D.W.;Wong, C. P. Nanotechnology 2010, 21, 155705.  

  • 加载中
    1. [1]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    2. [2]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    3. [3]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    4. [4]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    5. [5]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    6. [6]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    7. [7]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    8. [8]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    9. [9]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    10. [10]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    13. [13]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    14. [14]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    18. [18]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    19. [19]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    20. [20]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

Metrics
  • PDF Downloads(973)
  • Abstract views(2602)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return