Citation: CHEN Zhan. Molecular Structures of Buried Polymer Interfaces and Biological Interfaces Detected by Sum Frequency Generation Vibrational Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 504-521. doi: 10.3866/PKU.WHXB201201091 shu

Molecular Structures of Buried Polymer Interfaces and Biological Interfaces Detected by Sum Frequency Generation Vibrational Spectroscopy

  • Received Date: 14 November 2011
    Available Online: 9 January 2012

  • Molecular structures at interfaces determine interfacial properties. In order to optimize the interfacial structures to achieve improved properties of advanced materials, it is important to characterize molecular structures of interfaces in situ in real time. Recently, a nonlinear optical spectroscopic technique, sum frequency generation (SFG) vibrational spectroscopy, has been developed into a powerful and unique tool to elucidate molecular structures of buried interfaces, including liquid/liquid, solid/liquid, and solid/solid interfaces. In this review, applications of SFG to study molecular structures of complex interfaces such as polymer interfaces and biological interfaces have been discussed. Particularly, molecular surface structural changes of various polymers in water, molecular interactions between polymers and silane model adhesion promoters at interfaces, and structures of buried polymer/polymer as well as polymer/metal interfaces have been presented. In addition, interfacial structures of peptides with varied secondary structures and several representative proteins have been introduced. Interfaces play important roles in many disciplines ranging from chemistry, biology, physics, materials science and engineering, to nanotechnology. The development of a unique technique which can probe molecular structures of complex interfaces in situ greatly impacts the research in these disciplines as well as many interdisciplinary studies.
  • 加载中
    1. [1]

      (1) Woodruff, D.; Delchar, T. Modern Techniques of Surface Science; Cambridge Univ. Press: Cambridge, 1986.

    2. [2]

      (2) Somorjai, G. A. Introduction to Surface Chemistry and Catalysis;Wiley: New York, 1994.

    3. [3]

      (3) Shen, Y. R. The Principles of Nonlinear Optics;Wiley: New York, 1984.

    4. [4]

      (4) Chen, Z.; Shen, Y. R.; Somorjai, G. A. Ann. Rev. Phys. Chem. 2002, 53, 437.  

    5. [5]

      (5) Chen, C. Y.; Liu,W. T.; Pagliusi, P.; Shen, Y. R. Macromolecules 2009, 42, 2122.  

    6. [6]

      (6) Rao, Y.; Comstock, M.; Eisenthal, K. B. J. Phys. Chem. B 2006, 110, 1727.  

    7. [7]

      (7) Moore, F. G.; Richmond, G. L. Accounts Chem. Res. 2008, 41, 739.  

    8. [8]

      (8) Chen, Z.; Gracias, D. H.; Somorjai, G. A. Appl. Phys. B 1999, 68, 549.  

    9. [9]

      (9) Gracias, D. H.; Chen, Z.; Shen, Y. R.; Somorjai, G. A. Accounts Chem. Res. 1999, 320, 930.

    10. [10]

      (10) Shultz, M. J.; Schnitzer, C.; Simonelli, D.; Baldelli, S. Int. Rev. Phys. Chem. 2000, 19, 123.  

    11. [11]

      (11) palakrishnan, D.; Liu, D. F.; Allen, H. C.; Kuo, M.; Shultz, M. J. Chem. Rev. 2006, 106, 1155.  

    12. [12]

      (12) Kim, J.; Cremer, P. S. J. Am. Chem. Soc. 2000, 122, 12371.  

    13. [13]

      (13) Briggman, K. A.; Stephenson, J. C.;Wallace,W. E.; Richter, L. J. J. Phys. Chem. B 2001, 105, 2785.  

    14. [14]

      (14) Gautam, K. S.; Schwab, A. D.; Dhinojwala, A.; Zhang, D.; Dougai, S. M.; Yeganeh, M. S. Phys. Rev. Lett. 2000, 85, 3854.  

    15. [15]

      (15) Baldelli, S. J. Phys. Chem. B 2003, 107, 6148.  

    16. [16]

      (16) Xu, M.; Spinney, R.; Allen, H. C. J. Phys. Chem. B 2009, 113, 4102.  

    17. [17]

      (17) Liu, J.; Conboy, J. C. J. Am. Chem. Soc. 2004, 126, 8894.  

    18. [18]

      (18) Ye, H. K.; Gu, Z. Y.; Gracias, D. H. Langmuir 2006, 22, 1863.  

    19. [19]

      (19) Jayathilake, H. D.; Zhu, M. H.; Rosenblatt, C.; Bordenyuk, A. N.;Weeraman, C.; Benderskii, A. V. J. Chem. Phys. 2006, 125, 064706.  

    20. [20]

      (20) Stokes, G. Y.; Buchbinder, A. M.; Gibbs-Davis, J. M.; Scheidt, K. M.; Geiger, F. M. J. Phys. Chem. A 2008, 112, 11688.

    21. [21]

      (21) Esenturk, O.;Walker, R. A. Chem. Phys. 2006, 125, 174701.

    22. [22]

      (22) Perry, A.; Neipert, C.; Space, B.; Moore, P. B. Chem. Rev. 2006, 106, 1234.  

    23. [23]

      (23) Li, Q. F.; Hua, R.; Cheah, I. J.; Chou, K. C. J. Phys. Chem. B 2008, 112, 694.  

    24. [24]

      (24) Li, Q. F.; Hua, R.; Chou, K. C. J. Phys. Chem. B 2008, 112, 2315.  

    25. [25]

      (25) McGall, S. J.; Davies, P. B.; Neivandt, D. J. J. Phys. Chem. A 2005, 109, 8745.  

    26. [26]

      (26) Chen, P.; Kung, K. Y.; Shen, Y. R.; Somorjai, G. A. Surf. Sci. 2001, 494, 289.  

    27. [27]

      (27) Chen, Z. Poly. Inter. 2006, 56, 577.

    28. [28]

      (28) Chen, X.; Chen, Z. Biochim. Biophys. Acta 2006, 1758, 1257.  

    29. [29]

      (29) Ye, S.; Nguyen, K.; Le Clair, S. V.; Chen, Z. J. Struct. Biol. 2009, 168, 61.  

    30. [30]

      (30) Le Clair, S. V.; Nguyen, K.; Chen, Z. J. Adhesion 2009, 85, 484.

    31. [31]

      (31) Chen, Z. Prog. Polym. Sci 2010, 35, 1376.

    32. [32]

      (32) Wang, J.;Woodcock, S. E.; Buck, S. M.; Chen, C.; Chen, Z. J. Am. Chem. Soc. 2001, 123, 9470.  

    33. [33]

      (33) Wang, J.; Chen, C.; Buck, S. M.; Chen, Z. J. Phys. Chem. B 2001, 105, 12118.  

    34. [34]

      (34) Ratner, B. D.; Castner, D. G. Surface Modification of Polymeric Biomaterials; Plenum Press: New York, 1996.

    35. [35]

      (35) Krishnan, S.;Weinman, C. J.; Ober, C. K. J. Mater. Chem. 2008, 18, 3405.  

    36. [36]

      (36) Yebra, D. M.; Kiil, S.; Dam-Johansen, K. Prog. Org. Coat. 2004, 50, 75.  

    37. [37]

      (37) Yoda, R. J. Biomater. Sci. -Polym. Ed. 1998, 9, 561.  

    38. [38]

      (38) Chambers, L. D.; Stokes, K. R.;Walsh, F. C.;Wood, R. J. K. Surf. Coat. Technol. 2006, 201, 3642.  

    39. [39]

      (39) Hron, P. Polym. Inter. 2003, 52, 1531.  

    40. [40]

      (40) Ruckenstein, E.; urisankar, S. V. J. Colloid Interface Sci. 1986, 109, 557.  

    41. [41]

      (41) Yasuda, H.; Charlson, E. J.; Charlson, E. M.; Yasuda, T.; Miyama, M.; Okuno, T. Langmuir 1991, 7, 2394.  

    42. [42]

      (42) Yasuda, T.; Okuno, T.; Yasuda, H. Langmuir 1994, 10, 2435.  

    43. [43]

      (43) Hogt, A. H.; Gre nis, D. E.; Andrade, J. D.; Kim, S.W.; Dankert, J.; Feijen, J. J. Colloid Interface Sci. 1985, 106, 289.  

    44. [44]

      (44) Lewis, K. B.; Ratner, B. D. J. Colloid Interface Sci. 1993, 159, 77.  

    45. [45]

      (45) Zhang, D.;Ward, R. S.; Shen, Y. R.; Somorjai, G. A. J. Phys. Chem. B 1997, 101, 9060.  

    46. [46]

      (46) Wang, J.; Paszti, Z.; Even, M. A.; Chen, Z. J. Am. Chem. Soc. 2002, 124, 7016.  

    47. [47]

      (47) Chen, C. Y.; Clarke, M. L.;Wang, J.; Chen, Z. Phys. Chem. Chem. Phys. 2005, 7, 2357.

    48. [48]

      (48) Clarke, M. L.; Chen, C.;Wang, J.; Chen, Z. Langmuir 2006, 22, 8800.  

    49. [49]

      (49) Lu, X.; Clarke, M. L.; Li, D.;Wang, X.; Xue, G.; Chen, Z. J. Phys. Chem. C 2011, 115, 13759.  

    50. [50]

      (50) Woodcock, S. E.; Chen, C.; Chen, Z. Langmuir 2004, 20, 1928.  

    51. [51]

      (51) Kristalyn, C. B.; Lu, X.;Weinman, C. J.; Ober, C. K.; Kramer, E. J.; Chen, Z. Langmuir 2010, 26, 11337.  

    52. [52]

      (52) Chen, C.;Wang, J.; Chen, Z. Langmuir 2004, 20, 10186.  

    53. [53]

      (53) Ye, S.; Majumdar, P.; Chisholm, B.; Stafslien, S.; Chen, Z. Langmuir 2010, 26, 16455.

    54. [54]

      (54) Chen, S. F.; Li, L. Y.; Zhao, C.; Zheng, J. Polymer 2010, 51, 5283.

    55. [55]

      (55) Jiang, S.; Cao, Z. Q. Adv. Mater. 2010, 22, 920.

    56. [56]

      (56) Zhang, Z.; Finlay, J. A.;Wang, L. F.; Gao, Y.; Callow, J. A.; Callow, M. E.; Jiang, S. Langmuir 2009, 25, 13516.  

    57. [57]

      (57) Shi, Q.; Ye, S.; Spanninga, S. A.; Su, Y.; Jiang, Z.; Chen, Z. Soft Matter 2009, 5, 3487.

    58. [58]

      (58) Chen, C.; Loch, C. L.;Wang, J.; Chen, Z. J. Phys. Chem. B 2003, 107, 10440.  

    59. [59]

      (59) Chen, C.;Wang, J.; Loch, C. L.; Ahn, D.; Chen, Z. J. Am. Chem. Soc. 2004, 126, 1174.  

    60. [60]

      (60) Loch, C. L.; Ahn, D.; Vázquez, A. V.; Chen, Z. J. Colloid Interface Sci. 2007, 308, 170.  

    61. [61]

      (61) Loch, C. L.; Ahn, D.;Wang, J.; Chen, C.; Chen, Z. Langmuir 2004, 20, 5467.  

    62. [62]

      (62) Loch, C. L.; Ahn, D.; Chen, C.; Chen, Z. J. Adhesion 2005, 81, 319.  

    63. [63]

      (63) Loch, C. L.; Ahn, D.; Chen, Z. J. Phys. Chem. B 2006, 110, 914.  

    64. [64]

      (64) Vázquez, A. V.; Shephard, N. E.; Steinecker, C. L.; Ahn, D.; Spanninga, S.; Chen, Z. J. Colloid Interface Sci. 2009, 331, 408.  

    65. [65]

      (65) Mine, K.; Nishio, M.; Sumimura, S. US Patent 4,033,924, 1977-07-05.

    66. [66]

      (66) Schulz, J. B. US Patent 4,087,585, 1978-05-02.

    67. [67]

      (67) Chen, C.;Wang, J.; Even, M. A.; Chen, Z. Macromolecules 2002, 35, 8093.  

    68. [68]

      (68) Lu, X.; Shephard, N.; Han, J.; Xue, G.; Chen, Z. Macromolecules 2008, 41, 8770.  

    69. [69]

      (69) Lu, X.; Li, D.; Kristalyn, C. B.; Han, J.; Shephard, N.; Rhodes, S.; Xue, G.; Chen, Z. Macromolecules 2009, 42, 9052.  

    70. [70]

      (70) Harp, G. P.; Rangwalla, H.; Li, G.; Yeganeh, M. S.; Dhinojwala, A. Macromolecules 2006, 39, 7464.  

    71. [71]

      (71) Li, G.; Dhinojwala, A.; Yeganeh, M. S. J. Phys. Chem. B 2009, 113, 2739.  

    72. [72]

      (72) Yurdumakan, B.; Nanjundiah, K.; Dhinojwala, A. J. Phys. Chem. C 2007, 111, 960.  

    73. [73]

      (73) Wilson, P. T.; Briggman, K. A.;Wallace,W. E.; Stephenson, J. C.; Richter, L. J. Appl. Phys. Lett. 2002, 80, 3084.  

    74. [74]

      (74) Kweskin, S. J.; Komvopoulos, K.; Somorjai, G. A. Langmuir 2005, 21, 3647.  

    75. [75]

      (75) Morita, S.; Ye, S.; Li, G.; Osawa, M. Vib. Spectr. 2004, 35, 15.  

    76. [76]

      (76) Ye, S.; Morita, S.; Li, G.; Noda, H.; Tanaka, M.; Uosaki, K.; Osawa, M. Macromolecules 2003, 36, 5694.  

    77. [77]

      (77) Kweskin, S. J.; Komvopoulos, K.; Somorjai, G. A. Appl. Phys. Lett. 2006, 88, 134105.  

    78. [78]

      (78) Chen, Z.;Ward, R.; Tian, Y.; Malizia, F.; Gracias, D. H.; Shen, Y. R.; Somorjai, G. A. J. Biomed. Mater. Res. 2002, 62, 254.  

    79. [79]

      (79) Mermut, O.; Phillips, D. C.; York, R. L.; McCrea, K. R.;Ward, R. S.; Somorjai, G. A. J. Am. Chem. Soc. 2006, 128, 3598.  

    80. [80]

      (80) Phillips, D. C.; York, R. L.; Mermut, O.; McCrea, K. R.;Ward, R. S.; Somorjai, G. A. J. Phys. Chem. C 2007, 111, 255.  

    81. [81]

      (81) York, R. L.; Browne,W. K.; Geissler, P. L.; Somorjai, G. A. Isr. J. Chem. 2007, 47, 51.  

    82. [82]

      (82) Weidner, T.; Apte, J. S.; Gamble, L. J.; Castner, D. G. Langmuir 2010, 26, 3433.  

    83. [83]

      (83) Weidner, T.; Breen, N. F.; Li, K.; Drohny, G. P.; Castner, D. G. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 13288.  

    84. [84]

      (84) Fu, L.; Ma, G.; Yan, E. C. J. Am. Chem. Soc. 2010, 132, 5405.  

    85. [85]

      (85) Jung, S.,Y.; Lim, S. M.; Albertorio, F.; Kim, G.; Gurau, M. C.; Yang, R. D.; Holden, M. A.; Cremer, P. S. J. Am. Chem. Soc. 2003, 125, 12782.  

    86. [86]

      (86) Chen, X.; Sagle, L. B.; Cremer, P. S. J. Am. Chem. Soc. 2007, 129, 15104.  

    87. [87]

      (87) Hall, S. A.; Jena, K. C.; Trudeau, T. G.; Hore, D. K. J. Phys. Chem. C 2011, 115, 11216.

    88. [88]

      (88) Wang, J.; Buck, S. M.; Chen, Z. Analyst 2003, 128, 773.  

    89. [89]

      (89) Wang, J.; Buck, S. M.; Even, M. A.; Chen, Z. J. Am. Chem. Soc. 2002, 124, 13302.  

    90. [90]

      (90) Wang, J.; Buck, S. M.; Chen, Z. J. Phys. Chem. B 2002, 106, 11666.  

    91. [91]

      (91) Wang, J.; Clarke, M. L.; Zhang, Y.; Chen, X. Langmuir 2003, 19, 7862.  

    92. [92]

      (92) Wang, J.; Clarke, M. L.; Chen, X.; Even, M. A.; Johnson,W. C.; Chen, Z. Surf. Sci. 2005, 587, 1.  

    93. [93]

      (93) Chen, X.; Clarke, M. L.;Wang, J.; Chen, Z. Intern. J. Mod. Phys. B 2005, 19, 691.  

    94. [94]

      (94) Nguyen, K. T.; Le Clair, S. V.; Ye, S.; Chen, Z. J. Phys. Chem. B 2009, 113, 12169.  

    95. [95]

      (95) Nguyen, K. T.; King, J. T.; Chen, Z. J. Phys. Chem. B 2010, 114, 8291.  

    96. [96]

      (96) Wang, J.; Lee, S. H.; Chen, Z. J. Phys. Chem. B 2008, 112, 2281.  

    97. [97]

      (97) Lee, S.;Wang, J.; Krimm, S.; Chen, Z. J. Phys. Chem. A 2006, 110, 7035.  

    98. [98]

      (98) Chen, X.;Wang, J.; Boughton, A. P.; Kristalyn, C. B.; Chen, Z. J . Am. Chem. Soc. 2007, 129, 1420.  

    99. [99]

      (99) Wang, J.; Chen, X.; Clarke, M. L.; Chen, Z. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 4978.  

    100. [100]

      (100) Krimm, S.; Bandekar, J. Adv. Protein Chem. 1986, 38, 181.  

    101. [101]

      (101) Barth, A.; Zscherp, C. Q. Rev. Biophys. 2002, 35, 369.  

    102. [102]

      (102) Tamm, L. K.; Tatulian, S. A. Q. Rev. Biophys. 1997, 30,365.  

    103. [103]

      (103) Wang, J.; Even, M. A.; Chen, X.; Schmaier, A. H.;Waite, J. H.; Chen, Z. J. Am. Chem. Soc. 2003, 125, 9914

    104. [104]

      (104) Chen, X.;Wang, J.; Sniadecki, J. J.; Even, M. A.; Chen, Z. Langmuir 2005, 21, 2662

    105. [105]

      (105) Lad, M. D.; Birembaut, F.; Clifton, L. A.; Frazier, R. A.; Webster, J. R. P.; Green, R. J. Biophys. J. 2007, 92, 3575.  

    106. [106]

      (106) Ludtke, S.; He, K.; Heller,W.; Harroun, T.; Yang, L.; Huang, H. Biochemistry 1996, 35, 13723.  

    107. [107]

      (107) Chen, F. Y.; Lee, M. T.; Huang, H.W. Biophys. J. 2003, 84, 3751.  

    108. [108]

      (108) Ludtke, S.; He, K.; Huang, H. Biochemistry 1995, 35, 16764.

    109. [109]

      (109) Imura, Y.; Choda, N.; Matsuzaki, K. Biophys. J. 2008, 95, 5757.  

    110. [110]

      (110) Boughton, A. P.; Andricioaei, I.; Chen, Z. Langmuir 2010, 26, 16031.  

    111. [111]

      (111) Mecke, A.; Lee, D. K.; Ramamoorthy, A.; Orr, B. G.; BanaszakHoll, M. M. Biophys. J. 2005, 89, 4043.  

    112. [112]

      (112) Gre ry, S. M.; Pokorny, A.; Almeida, P. F. F. Biophys. J. 2009, 96, 116.  

    113. [113]

      (113) Nguyen, K. T.; Le Clair, S. V.; Ye, S.; Chen, Z. J. Phys. Chem. B 2009, 113, 12358.  

    114. [114]

      (114) Murzyn, K.; Pasenkiewicz-Gierula, M. J. Mol. Model. 2003, 9, 217.  

    115. [115]

      (115) Yang, P.; Ramamoorthy, A.; Chen, Z. Langmuir 2011, 27, 7760.  

    116. [116]

      (116) Hallock, K. J.; Lee, D.; Ramamoorthy, A. Biophys. J. 2003, 84, 3052.  

    117. [117]

      (117) Dempsey, C. E. Biochim. Biophys. Acta 1990, 1031, 143.

    118. [118]

      (118) Wang, J.; Paszti, Z.; Clarke, M. L.; Chen, X.; Chen, Z. J. Phys. Chem. B 2007, 111, 6088.  

    119. [119]

      (119) Nguyen, K.; Soong,T.; Im, S.;Waskell, L.; Ramamoorthy, A.; Chen, Z. J. Am. Chem. Soc., 2010, 132, 15112.

    120. [120]

      (120) Renthal, R. Cell Mol. Life Sci. 2010, 67, 1077.  

    121. [121]

      (121) Colombo, S. F.; Longhi, R.; Borgese, N. J. Cell Sci. 2009, 122, 2383.  

    122. [122]

      (122) Dürr, U. H. N.; Ramamoorthy, A.;Waskell, L. Biochim. Biophys. Acta 2007, 1768, 3235.  

    123. [123]

      (123) Neves, S. R.; Ram, P. T.; Iyengar, R. Science 2002, 296, 1636.  

    124. [124]

      (124) Cabrera-Vera, T. M.; Vanhauwe, J.; Thomas, T. O.; Medkova, M.; Preininger, A.; Mazzoni, M. R.; Hamm, H. E. Endocr. Rev. 2003, 24, 765.  

    125. [125]

      (125) Chen, X.; Boughton, A. P.; Tesmer, J. J. G.; Chen, Z. J. Am. Chem. Soc. 2007, 129, 12658.  

    126. [126]

      (126) Boughton, A. P.; Yang, P.; Tesmer, V. M.; Ding, B.; Tesmer, J. J. G.; Chen, Z. Proc. Natl. Acad. Sci . U. S. A. 2011, 108, E667.

    127. [127]

      (127) Clarke, M. L.;Wang, J.; Chen, Z. J. Phys. Chem. B 2005, 109, 22027.  

    128. [128]

      (128) Wang, J.; Chen, X.; Clarke, M. L.; Chen, Z. J. Phys. Chem. B 2006, 110, 5017.  

    129. [129]

      (129) Ye, S.; Nguyen, K. T.; Boughton, A. P.; Mello, C. M.; Chen, Z. Langmuir 2010, 26, 6471.  

    130. [130]

      (130) Han, X.; Soblosky, L.; Slutsky, M.; Mello, C. M.; Chen, Z. Langmuir 2011, 27, 7042.

    131. [131]

      (131) Chen, X.;Wang, J.; Paszti, Z.;Wang, F.; Schrauben, J. N.; Tarabara, V. V.; Schmaier, A. H.; Chen, Z. Anal. Bioanal. Chem. 2007, 388, 65.  

    132. [132]

      (132) Ye, S.; Nguyen, K. T.; Chen, Z. J. Phys. Chem. B 2010, 114, 3334.  

    133. [133]

      (133) Wang, J.; Clarke, M. L.; Chen, Z. Anal. Chem. 2004, 76, 2159.  

    134. [134]

      (134) Guyotsionnest, P.; Hunt J. H.; Shen, Y. R. Phys. Rev. Lett. 1987, 59, 1597.  

    135. [135]

      (135) Hunt, J. H.; Guyot-Sionnest, P.; Shen, Y. R. Chem. Phys. Lett. 1987, 133, 189.  

    136. [136]

      (136) Zhang, C.;Wang, J.; Khmaladze, A.; Liu, Y.; Ding, B.; Jasensky, J.; Chen, Z. Opt. Lett. 2011, 36, 2272.  

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    3. [3]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    4. [4]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    7. [7]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    8. [8]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    9. [9]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    10. [10]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    11. [11]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    12. [12]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    13. [13]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    14. [14]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    15. [15]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    16. [16]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    17. [17]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    18. [18]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    19. [19]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    20. [20]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

Metrics
  • PDF Downloads(986)
  • Abstract views(2779)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return