Citation: XIAO Yao-Ming, WU Ji-Huai, YUE Gen-Tian, LIN Jian-Ming, HUANG Miao-Liang, FAN Le-Qing, LAN Zhang. Preparation of Single-Crystalline TiO2 Nanowires and Their Application in Flexible Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 578-584. doi: 10.3866/PKU.WHXB201201032 shu

Preparation of Single-Crystalline TiO2 Nanowires and Their Application in Flexible Dye-Sensitized Solar Cells

  • Received Date: 18 October 2011
    Available Online: 3 January 2012

  • Single-crystalline TiO2 nanowires (SCTNWs) were prepared using a hydrothermal growth method. The (010) crystal face of the titania particles was eroded by NaOH solution to produce Na2Ti4O9 at high temperature and pressure. H2Ti4O9·H2O was generated after washing with distilled water and HCl, which was then linked to a wire by hydrogen bonding. Finally, sintering gave SCTNWs. The SCTNWs were characterized by transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The influence of hydrothermal growth time was investigated. A flexible photoanode was fabricated on Ti foil using a highly stable and uniform titania colloid including the SCTNWs. The photovoltaic performance of dye-sensitized solar cells (DSSCs) containing different contents of SCTNWs was evaluated using scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), ultraviolet-visible (UV-Vis) spectrophotometry, and photovoltaic tests. Under optimized conditions with 7.5% (w) SCTNW, a flexible DSSC with a lightto- electrical energy conversion efficiency of 6.48% was achieved under irradiation with simulated solar light with an intensity of 100 mW·cm-2.
  • 加载中
    1. [1]

      (1) O' Regan, B.; Gratzel, M. Nature 1991, 353, 737.  

    2. [2]

      (2) Gratzel, M. Acc. Chem. Res. 2009, 42, 1788.  

    3. [3]

      (3) Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Langmuir 1998, 14, 3160.  

    4. [4]

      (4) Liu, R. H.; Zhang, S.; Xia, X. Y.; Yun, D. Q.; Bian, Z. Q.; Zhao, Y. L. Acta Phys. -Chim. Sin. 2011, 27 (7), 1701. [刘润花, 张森, 夏新元, 云大钦, 卞祖强, 赵永亮. 物理化学学报, 2011, 27 (7), 1701.]

    5. [5]

      (5) Wang,W.; Lin, H.; Li, J.;Wang, N. J. Am. Ceram. Soc. 2008, 91, 628.  

    6. [6]

      (6) Wu, L. Z.; Zhi, J. F. Acta Phys. -Chim. Sin. 2007, 23 (8), 1173. [吴良专, 只金芳. 物理化学学报, 2007, 23 (8), 1173.]

    7. [7]

      (7) Zhang, X.; Yao, B.; Zhao, L.; Liang, C.; Zhang, L.; Mao, Y. J. Electrochem. Soc. 2001, 148 (7), G398.

    8. [8]

      (8) Dong, X.; Tao, J.; Li, Y. Y.;Wang, T.; Zhu, H. Acta Phys. -Chim. Sin. 2009, 25 (9), 1874. [董祥, 陶杰, 李莹滢, 汪涛, 朱宏. 物理化学学报, 2009, 25 (9), 1874.]

    9. [9]

      (9) Lei, Y.; Zhang, L. D.; Meng, G.W.; Li, G. H.; Zhang, X. Y.; Liang, C. H.; Chen,W.;Wang, S. X. Appl. Phys. Lett. 2001, 78 (8), 1125.

    10. [10]

      (10) Zheng, M.; Dong, S. X. Nano Lett. 2002, 2, 717.  

    11. [11]

      (11) Tian, Z. R.; Voight, J. A.; Liu, J.; Mckenzie, B.; Xu, H. F. J. Am. Chem. Soc. 2003, 125, 12384.  

    12. [12]

      (12) Lon , C.; Freitas, J.; DePaoli, M. J. Photochem. Photobio. A: Chem. 2003, 159, 33.  

    13. [13]

      (13) Gratzel, M. Chem. Commun. 2006, 38, 4004.

    14. [14]

      (14) Kang, M. G.; Park, N. G.; Ryu, K. S.; Chang, S. H.; Kim, K. J. Sol. Energy Mater. Sol. Cells 2006, 90, 574.  

    15. [15]

      (15) Xiao, Y. M.;Wu, J. H.; Li, Q. H.; Xie, G. X.; Yue, G. T.; Ye, H. F.; Lan, Z.; Huang, M. L.; Lin, J. M. Chin. Sci. Bull. 2010, 55, 980. [肖尧明, 吴季怀, 李清华, 谢桂香, 岳根田, 叶海峰, 兰章, 黄妙良, 林建明. 科学通报, 2009, 54 (16), 2425.]  

    16. [16]

      (16) Xiao, Y. M.;Wu, J. H.; Yue, G. T.; Xie, G. X.; Lin, J. M.; Huang, M. L. Electrochim. Acta 2010, 55, 4573.  

    17. [17]

      (17) Lin, X.;Wu, M. X.; An, J.; Miao, Q. Q.; Qin, D.; Ma, T. L. Acta Phys. -Chim. Sin. 2011, 27 (11), 2577. [林逍, 武明星, 安江, 苗青青, 覃达, 马廷丽. 物理化学学报, 2011, 27 (11), 2577.]

    18. [18]

      (18) Yuan, Z.; Su, B. Colloids & Surfaces. A, 2004, 241, 173.  

    19. [19]

      (19) Wu, J. H.; Lan, Z.; Lin, J. M.; Huang, M. L.; Hao, S. C.; Stao, T.; Yin, S. Adv. Mater. 2007, 19, 4006.  

    20. [20]

      (20) Wu, J. H.; Hao, S. C.; Lan, Z.; Lin, J. M.; Huang, M. L.; Huang, Y. F.; Li, P. J.; Yin, S.; Stao, T. J. Am. Chem. Soc. 2008, 130, 11568.  

    21. [21]

      (21) Lan, Z.;Wu, J. H.; Hao, S. C.; Lin, J. M.; Huang, M. L.; Huang, Y. F. Energy Environ. Sci. 2009, 2, 524.  

    22. [22]

      (22) Xiao, Y. M.;Wu, J. H.; Yue, G. T.; Lin, J. M.; Huang, M. L.; Lan, Z. Electrochim. Acta 2011, 56, 8545.  

    23. [23]

      (23) Gratzel, M. Prog. Photovoltaic Res. Applic. 2000, 8, 171.  

    24. [24]

      (24) Liang, J.; Ma, S. F.; Han, P. D.; Sun, C. Y.; Xu, B. S. Rare Metal Mater. Engin. 2005, 34 (2), 287. [梁建, 马淑芳, 韩培德, 孙彩云, 许并社. 稀有金属材料与工程, 2005, 34 (2), 287.]

    25. [25]

      (25) Yin, S.; Hasegawa, H.; Maeda, D.; Ishitsuka, M.; Sato, T. J. Photochem. Photobiol. A: Chem. 2004, 163, 1.  

    26. [26]

      (26) Feist, T.; Davies, P. J. Solid State Chem. 1992, 101 (2), 275.

    27. [27]

      (27) Uchida, S.; Yamamoto, Y.; Fujishiro, Y.;Watanabe, A.; Ito, O.; Sato, T. J. Chem. Soc. Faraday Trans. 1997, 93, 3229.  

    28. [28]

      (28) Mei, X.; Cho, S.; Fan, B.; Ouyang, J. Y. Nanotechnology 2010, 21, 395202.  

    29. [29]

      (29) Li, G.;Wang, F.; Jiang, Q.; Gao, X.; Shen, P. Angew. Chem. Int. Edit. 2010, 49, 3653.

    30. [30]

      (30) Mor, G.; Shankar, K.; Paulose, M.; Varghese, O.; Grimes, C. Nano Lett. 2006, 6, 215.  

    31. [31]

      (31) Lin, H.;Wang, N.; Zhang, L. Adv. Technol. Mater. Mater. Process. J. 2007, 9, 5.

    32. [32]

      (32) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M. J. Am. Ceram. Soc. 1993, 115, 6382.

    33. [33]

      (33) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Gratzel, M. J. Am. Chem. Soc. 2005, 127, 16835.  

    34. [34]

      (34) Ito, S.; Yoshida, S.;Watanabe, T. Chem. Lett. 2000, 29, 70.

  • 加载中
    1. [1]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    7. [7]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    8. [8]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    9. [9]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    10. [10]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    11. [11]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    16. [16]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    17. [17]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    18. [18]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

Metrics
  • PDF Downloads(1770)
  • Abstract views(2912)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return