Citation: TANG Jun, KANG Chao-Yang, LI Li-Min, XU Peng-Shou. Direct Graphene Growth by Depositing Carbon Atoms on Si Substrate Covered by SiC Buffer Layers[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2953-2959. doi: 10.3866/PKU.WHXB20112953 shu

Direct Graphene Growth by Depositing Carbon Atoms on Si Substrate Covered by SiC Buffer Layers

  • Received Date: 13 July 2011
    Available Online: 18 October 2011

    Fund Project: 国家自然科学基金(50872128)资助项目 (50872128)

  • Graphene is a newly discovered material with many functions. The preparation of graphene on suitable substrates is a challenge in the material preparation field. In this paper, graphene thin films were grown on Si substrates covered with SiC buffer layers (SiC/Si) by the direct deposition of carbon atoms using molecular beam epitaxy (MBE) equipment. The structural properties of the samples produced at different substrate temperatures (800, 900, 1000, 1100 ° C) were investigated by reflection high energy electron diffraction (RHEED), Raman spectroscopy and near-edge X-ray absorption fine structure (NEXAFS). The results indicate that the thin films grown at all temperatures exhibit the characteristics of graphene with a turbostratic stacking structure. As the substrate temperature increases the crystalline quality of the graphene improves. However, a very high temperature decreases the quality of graphene. The best graphene films were obtained at a substrate temperature of 1000 ° C. This is due to the low substrate temperature resulting in a too low carbon atom activity for the formation of an ordered six-member ring of C-sp2. When the substrate temperature was too high the silicon atoms in the substrate became so active that silicon atoms diffused to the surface of the sample through SiC buffer defects and they bonded to the depositing carbon atoms, which resulted in a lower crystallization quality of the carbon layers.
  • 加载中
    1. [1]

      (1) Novoselov, K. S.; Geim, A. K.; Firsov, A. A. Science 2004, 306, 666.  

    2. [2]

      (2) Service, R. F. Science 2009, 324, 875.  

    3. [3]

      (3) Morzov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Phys. Rev. Lett. 2008, 100, 016602.  

    4. [4]

      (4) Balandin, A. A.; Ghosh, S.; Bao,W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902.  

    5. [5]

      (5) Ganhua, L.; Ocola, L. E.; Junhong, C. Appl. Phys. Lett. 2009, 123, 083111.

    6. [6]

      (6) Kang, C. Y.; Tang, J.; Li, L. M.; Pan, H. B.; Yan,W. S.; Xu, P. S.;Wei, S. Q.; Chen, X. F.; Xu, X. G. Acta Phys. Sin. 2011, 60, 047302. [康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 物理学报, 2011, 60, 047302.]

    7. [7]

      (7) Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. J. Phys. Chem. B 2004, 108, 19912.  

    8. [8]

      (8) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.  

    9. [9]

      (9) Di, C. A.;Wei, D. C.; Yu, G.; Liu, Y. Q.; Guo, Y. L.; Zhu, D. B. Adv. Mater. 2008, 20, 3289.  

    10. [10]

      (10) Wu, J. S.; Pisula,W.; Mullen, K. Chem. Rev. 2007, 107, 718.  

    11. [11]

      (11) Hackley, J.; Ali, D.; DiPasquale, J.; Demaree, J. D.; Richardson, C. J. K. Appl. Phys. Lett. 2009, 95, 133114.  

    12. [12]

      (12) Ouerghi, A.; Kahouli, A.; Lucot, D.; Portail, M.; Travers, L.; Gierak, J.; Penuelas, J. P.; Shukla, A.; Chassagne, T.; Zielinski, M. Appl. Phys. Lett. 2010, 96, 191910.  

    13. [13]

      (13) Tang, J.; Liu, Z. L.; Kang, C. Y.; Yan,W. S.; Xu, P. S.; Pan, H. B.;Wei, S. Q.; Gao, Y. Q.; Xu, X. G. Acta Phys. -Chim. Sin. 2010, 26, 253. [唐军, 刘忠良, 康朝阳, 闫文盛, 徐彭寿, 潘海斌, 韦世强, 高玉强, 徐现刚. 物理化学学报, 2010, 26, 253.]

    14. [14]

      (14) Suemitsu, M.; Fukidome, H. J. Phys. D: Appl. Phys. 2010, 43, 374012.  

    15. [15]

      (15) Tang, J.; Kang, C. Y.; Li, L. M.; Yan,W. S.;Wei, S. Q.; Xu, P. S. Phys. E 2011, 43, 1415.  

    16. [16]

      (16) Liu, Z. L.; Liu, J. F.; Ren, P.; Xu, P. S. Journal of Inorganic Materials 2008, 23, 549. [刘忠良, 刘金峰, 任鹏, 徐彭寿. 无机材料学报, 2008, 23, 549.]  

    17. [17]

      (17) Liu, Z. L.; Liu, J. F.; Ren, P.; Xu, P. S. Chinese Journal of Vacuum Science and Technology 2008, 4, 992. [刘忠良, 刘金峰, 任鹏, 徐彭寿. 真空科学与技术学报, 2008, 4, 992]

    18. [18]

      (18) Liu, J. F.; Liu, Z. L.;Wu, Y. Y.; Xu, P. S. Journal of Inorganic Materials 2007, 22, 720. [刘金峰, 刘忠良, 武煜宇, 徐彭寿. 无机材料学报, 2007, 22, 720.]

    19. [19]

      (19) Ni, Z. H.; Chen,W.; Fan, X. F.; Kuo, J. L.; Yu, T.;Wee, A. T. S.; Shen, Z. X. Phys. Rev. B 2008, 77, 115416.  

    20. [20]

      (20) Röhrl, J.; Hundhausen, M.; Emtsev, K. V.; Seyller, T.; Graupner, R.; Ley, L. Appl. Phys. Lett. 2008, 92, 01918.

    21. [21]

      (21) Thomsen, C.; Reich, S. Phys. Rev. Lett. 2000, 85, 5214

    22. [22]

      (22) Pimenta, M. A.; Dresselhaus, G..; Dresselhaus, M. S.; Cancado, L. G.; Jorioa, A.; Saito, R. Phys. Chem. Chem. Phys 2007, 9, 1276.

    23. [23]

      (23) Ferralis, N.; Maboudian, R.; Carraro, C. Phys. Rev. Lett. 2008, 101, 156801.  

    24. [24]

      (24) Cancado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhaes-Pania , R.; Pimenta, M. A. Appl. Phys. Lett. 2006, 88, 163106.  

    25. [25]

      (25) Malarda, L. M.; Pimentaa, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Phys. Rep. 2009, 473, 51.  

    26. [26]

      (26) Faugeras, C.; Nerrire, A.; Potemski, M.; Mahmood, A.; Dujardin, E.; Berger, C.; de Heer,W. A. Appl. Phys. Lett. 2008, 92, 011914.  

    27. [27]

      (27) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Phys. Rev. Lett. 2006, 97, 187401.  

    28. [28]

      (28) Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund, P. C. Nano Lett. 2006, 6, 2667.  

    29. [29]

      (29) Batson, P. E. Phys. Rev. B 1993, 48, 2608.  

    30. [30]

      (30) Fischer, D. A.;Wentzcovitch, R. M.; Carr, R. G.; Continenza, A.; Freeman, A. J. Phys. Rev. B 1991, 44, 1427.  

    31. [31]

      (31) Coleman, V. A.; Kunt, R.; Karis, O. J. Phys. D: Appl. Phys. 2008, 41, 062001

    32. [32]

      (32) Pedio, M.; Giglia, A.; Mahne, N. Phys. Scr. 2005, 115, 308.

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    3. [3]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    4. [4]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    5. [5]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    6. [6]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    9. [9]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    14. [14]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    15. [15]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    16. [16]

      Xianping DuYing HuangChen ChenZhenhe FengMeng Zong . Encapsulating Si particles in multiple carbon shells with pore-rich for constructing free-standing anodes of lithium storage. Chinese Chemical Letters, 2024, 35(12): 109990-. doi: 10.1016/j.cclet.2024.109990

    17. [17]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    18. [18]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(1413)
  • Abstract views(3085)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return