Citation: TANG Jun, KANG Chao-Yang, LI Li-Min, XU Peng-Shou. Direct Graphene Growth by Depositing Carbon Atoms on Si Substrate Covered by SiC Buffer Layers[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2953-2959. doi: 10.3866/PKU.WHXB20112953 shu

Direct Graphene Growth by Depositing Carbon Atoms on Si Substrate Covered by SiC Buffer Layers

  • Received Date: 13 July 2011
    Available Online: 18 October 2011

    Fund Project: 国家自然科学基金(50872128)资助项目 (50872128)

  • Graphene is a newly discovered material with many functions. The preparation of graphene on suitable substrates is a challenge in the material preparation field. In this paper, graphene thin films were grown on Si substrates covered with SiC buffer layers (SiC/Si) by the direct deposition of carbon atoms using molecular beam epitaxy (MBE) equipment. The structural properties of the samples produced at different substrate temperatures (800, 900, 1000, 1100 ° C) were investigated by reflection high energy electron diffraction (RHEED), Raman spectroscopy and near-edge X-ray absorption fine structure (NEXAFS). The results indicate that the thin films grown at all temperatures exhibit the characteristics of graphene with a turbostratic stacking structure. As the substrate temperature increases the crystalline quality of the graphene improves. However, a very high temperature decreases the quality of graphene. The best graphene films were obtained at a substrate temperature of 1000 ° C. This is due to the low substrate temperature resulting in a too low carbon atom activity for the formation of an ordered six-member ring of C-sp2. When the substrate temperature was too high the silicon atoms in the substrate became so active that silicon atoms diffused to the surface of the sample through SiC buffer defects and they bonded to the depositing carbon atoms, which resulted in a lower crystallization quality of the carbon layers.
  • 加载中
    1. [1]

      (1) Novoselov, K. S.; Geim, A. K.; Firsov, A. A. Science 2004, 306, 666.  

    2. [2]

      (2) Service, R. F. Science 2009, 324, 875.  

    3. [3]

      (3) Morzov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Phys. Rev. Lett. 2008, 100, 016602.  

    4. [4]

      (4) Balandin, A. A.; Ghosh, S.; Bao,W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902.  

    5. [5]

      (5) Ganhua, L.; Ocola, L. E.; Junhong, C. Appl. Phys. Lett. 2009, 123, 083111.

    6. [6]

      (6) Kang, C. Y.; Tang, J.; Li, L. M.; Pan, H. B.; Yan,W. S.; Xu, P. S.;Wei, S. Q.; Chen, X. F.; Xu, X. G. Acta Phys. Sin. 2011, 60, 047302. [康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 物理学报, 2011, 60, 047302.]

    7. [7]

      (7) Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. J. Phys. Chem. B 2004, 108, 19912.  

    8. [8]

      (8) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.  

    9. [9]

      (9) Di, C. A.;Wei, D. C.; Yu, G.; Liu, Y. Q.; Guo, Y. L.; Zhu, D. B. Adv. Mater. 2008, 20, 3289.  

    10. [10]

      (10) Wu, J. S.; Pisula,W.; Mullen, K. Chem. Rev. 2007, 107, 718.  

    11. [11]

      (11) Hackley, J.; Ali, D.; DiPasquale, J.; Demaree, J. D.; Richardson, C. J. K. Appl. Phys. Lett. 2009, 95, 133114.  

    12. [12]

      (12) Ouerghi, A.; Kahouli, A.; Lucot, D.; Portail, M.; Travers, L.; Gierak, J.; Penuelas, J. P.; Shukla, A.; Chassagne, T.; Zielinski, M. Appl. Phys. Lett. 2010, 96, 191910.  

    13. [13]

      (13) Tang, J.; Liu, Z. L.; Kang, C. Y.; Yan,W. S.; Xu, P. S.; Pan, H. B.;Wei, S. Q.; Gao, Y. Q.; Xu, X. G. Acta Phys. -Chim. Sin. 2010, 26, 253. [唐军, 刘忠良, 康朝阳, 闫文盛, 徐彭寿, 潘海斌, 韦世强, 高玉强, 徐现刚. 物理化学学报, 2010, 26, 253.]

    14. [14]

      (14) Suemitsu, M.; Fukidome, H. J. Phys. D: Appl. Phys. 2010, 43, 374012.  

    15. [15]

      (15) Tang, J.; Kang, C. Y.; Li, L. M.; Yan,W. S.;Wei, S. Q.; Xu, P. S. Phys. E 2011, 43, 1415.  

    16. [16]

      (16) Liu, Z. L.; Liu, J. F.; Ren, P.; Xu, P. S. Journal of Inorganic Materials 2008, 23, 549. [刘忠良, 刘金峰, 任鹏, 徐彭寿. 无机材料学报, 2008, 23, 549.]  

    17. [17]

      (17) Liu, Z. L.; Liu, J. F.; Ren, P.; Xu, P. S. Chinese Journal of Vacuum Science and Technology 2008, 4, 992. [刘忠良, 刘金峰, 任鹏, 徐彭寿. 真空科学与技术学报, 2008, 4, 992]

    18. [18]

      (18) Liu, J. F.; Liu, Z. L.;Wu, Y. Y.; Xu, P. S. Journal of Inorganic Materials 2007, 22, 720. [刘金峰, 刘忠良, 武煜宇, 徐彭寿. 无机材料学报, 2007, 22, 720.]

    19. [19]

      (19) Ni, Z. H.; Chen,W.; Fan, X. F.; Kuo, J. L.; Yu, T.;Wee, A. T. S.; Shen, Z. X. Phys. Rev. B 2008, 77, 115416.  

    20. [20]

      (20) Röhrl, J.; Hundhausen, M.; Emtsev, K. V.; Seyller, T.; Graupner, R.; Ley, L. Appl. Phys. Lett. 2008, 92, 01918.

    21. [21]

      (21) Thomsen, C.; Reich, S. Phys. Rev. Lett. 2000, 85, 5214

    22. [22]

      (22) Pimenta, M. A.; Dresselhaus, G..; Dresselhaus, M. S.; Cancado, L. G.; Jorioa, A.; Saito, R. Phys. Chem. Chem. Phys 2007, 9, 1276.

    23. [23]

      (23) Ferralis, N.; Maboudian, R.; Carraro, C. Phys. Rev. Lett. 2008, 101, 156801.  

    24. [24]

      (24) Cancado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhaes-Pania , R.; Pimenta, M. A. Appl. Phys. Lett. 2006, 88, 163106.  

    25. [25]

      (25) Malarda, L. M.; Pimentaa, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Phys. Rep. 2009, 473, 51.  

    26. [26]

      (26) Faugeras, C.; Nerrire, A.; Potemski, M.; Mahmood, A.; Dujardin, E.; Berger, C.; de Heer,W. A. Appl. Phys. Lett. 2008, 92, 011914.  

    27. [27]

      (27) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Phys. Rev. Lett. 2006, 97, 187401.  

    28. [28]

      (28) Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund, P. C. Nano Lett. 2006, 6, 2667.  

    29. [29]

      (29) Batson, P. E. Phys. Rev. B 1993, 48, 2608.  

    30. [30]

      (30) Fischer, D. A.;Wentzcovitch, R. M.; Carr, R. G.; Continenza, A.; Freeman, A. J. Phys. Rev. B 1991, 44, 1427.  

    31. [31]

      (31) Coleman, V. A.; Kunt, R.; Karis, O. J. Phys. D: Appl. Phys. 2008, 41, 062001

    32. [32]

      (32) Pedio, M.; Giglia, A.; Mahne, N. Phys. Scr. 2005, 115, 308.

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    3. [3]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    11. [11]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    12. [12]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    16. [16]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    17. [17]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    18. [18]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    19. [19]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    20. [20]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

Metrics
  • PDF Downloads(1413)
  • Abstract views(3031)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return