Citation:
CHEN Shu-Hai, XU Yao, LÜ Bao-Liang, WU Dong. Microwave-Assisted Hydrothermal Synthesis of Ag-Loaded Titania Nanotubes and Their Photocatalytic Performance[J]. Acta Physico-Chimica Sinica,
;2011, 27(12): 2933-2938.
doi:
10.3866/PKU.WHXB20112933
-
Ag-loaded titania nanotubes were synthesized by a microwave-assisted hydrothermal method and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS), and UV-visible (UV-Vis) diffuse reflectance spectroscopy. The titania nanotubes were found to be in the anatase phase after calcination. The length of the synthesized titania nanotubes was about 200 nm, the average outer diameter was 7-8 nm, the inner diameter was 5-6 nm and the specific surface area was found to be 371 m2·g-1. With Ag loading the silver atoms did not enter the lattices of the nanotubes but dispersed over the nanotube surface. Ag-loading had no effect on the nanostructure and the crystal phase of the TiO2 nanotubes. The Ag-loaded titania nanotubes showed obvious visible light absorption and enhanced visible photocatalytic performance. The photocatalytic activity was evaluated by the photodegradation of a Rhodamine B aqueous solution under visible light. Compared with Ag-loaded P25 and pure titania nanotubes the Ag-loaded titania nanotubes enhanced the photoactivity and reached the maximum activity at a Ag/Ti molar ratio of 0.5%.
-
-
-
[1]
(1) Jiang, Z.;Yang, F.; Luo, N.; Chu, B.; Sun, D.; Shi, H. H.; Xiao, T. C.; Edwards. P. P. Chem Commun. 2008, No. 47, 6372.
-
[2]
(2) Jaturong, J.; Yoshikazu, S.; Susumu, Y. Catal Commun. 2008, 9, 1265.
-
[3]
(3) Ikeda.T.; Nomoto.T.; Eda. K.; Mizutani. Y.; Kato. H.; Kudo. A.; Onishi. H. J. Phys. Chem. C 2008, 112, 1167.
-
[4]
(4) Yu, A. M.;Wu, G. J.; Zhang, F. X.; Yang, Y. L.; Guan, N. J. Catal Lett. 2009, 129, 507.
-
[5]
(5) Kudo, A.; Niishiro, R.; Iwase, A.; Kato, H. Chem. Phys. 2007, 339, 104.
-
[6]
(6) Kowalska, E.; Mahaney, O. O. P.; Abe, R.; Ohtani, B. Phys. Chem. Chem. Phys. 2010, 12, 2344.
-
[7]
(7) Kowalska, E.; Abe, R.; Ohtani, B. Chem. Commun. 2009, No. 2, 241.
-
[8]
(8) Sakthivel, S.; Shankar, M. V.; Palanichamy, M.; Arabindoo, B.; Bahnemann, D.W.; Murugesan V. Water Res. 2004, 38, 3001.
-
[9]
(9) Vijayan, B. K.; Dimitrijevic, N. M.;Wu, J.; Gray, K. A. J. Phys. Chem. C 2010, 114, 21262.
-
[10]
(10) Sobana, N.; Muruganadham, M.; Swaminathan, M. J. Mol. Catal. A-Chem. 2006, 258, 124.
-
[11]
(11) Liang, Y. Q.; Cui, Z. D.; Zhu, S. L.; Liu, Y.; Yang, X. J. J. Catal. 2011, 278, 276.
-
[12]
(12) Wen, B. M.; Liu, C. Y.; Liu, Y. Inorg. Chem. 2005, 44, 6503.
-
[13]
(13) Cheng, B.; Le, Y.; Yu, J. G. J. Hazard. Mater. 2010, 177, 971.
-
[14]
(14) Li, X. Y.; Zou, X. J.; Qua, Z. P.; Zhao, Q. D.;Wang, L. Z. Chemosphere. 2011, 83, 674.
-
[15]
(15) Jung, J. H.; Kobayashi, H.; Bommel, K. J. C.; Shinkai, S.; Shimizu, T. Chem. Mater. 2002, 14, 1445.
-
[16]
(16) Zhang, Y. J.; Li, X. F.; Chen, D.; Ma, N. H.; Hua, X. S.;Wang, H.W. Scripta Mater. 2009, 60, 543.
- [17]
-
[18]
(18) Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.;Walsh, F. C. J. Mater. Chem. 2004, 14, 3370.
-
[19]
(19) Qamar, M.; JKim, S.; Ganguli, A. K. Nanotechnology 2009, 20, 455703.
-
[20]
(20) Long, H. J.;Wang, E. J.; Dong, J. Z.;Wang, L. L.; Cao, Y. Q.; Yang,W. S.; Cao, Y. A. Acta Chim. Sin. 2009, 67, 1533. [龙绘锦, 王恩君, 董江舟, 王玲玲, 曹永强, 杨文胜, 曹亚安, 化学学报, 2009, 67, 1533.]
-
[21]
(21) Li, J. X.; Xu, J. H.; Dai,W. L.; Fan, K. N. J. Phys. Chem. C 2009, 113, 8343.
-
[22]
(22) He, Z. Q.; Xie, L.; Song, S.;Wang, C.; Tu, J. J.; Hong, F. Y.; Liu, Q.; Chen, J. M.; Xu, X. H. J. Mol. Catal A-Chem. 2010, 319, 78.
-
[23]
(23) Yang, X.;Wang, Y. H.; Xu, L. L.; Yu, X. D.; Guo, Y. H. J. Phys. Chem. C 2008, 112, 11481.
-
[24]
(24) Wang, P.; Huang, B. B.; Zhang, X. Y.; Qin, X. Y.; Jin, H.; Dai, Y.;Wang, Z. Y.;Wei, J. Y.; Zhan, J.;Wang, S. Y.;Wang, J. P. Whangbo, M. H. Chem. Eur. J. 2009, 15, 1821.
-
[25]
(25) Takirawa, T.;Watanabe, T.; Honda, K. J. Phys. Chem. 1978, 82, 1391.
-
[26]
(26) Kim,W.; Tachikawa, T.; Majima, T.; Li, C.; Kim, H. J.; Choi, W. Energy Environ. Sci. 2010, 3, 1789.
-
[27]
(27) Chen, Q. F.; Shi,W. M.; Xu, Y.Wu, D. Sun,Y. H. Mater. Chem. Phys. 2011, 125, 825.
-
[1]
-
-
-
[1]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[2]
Yuena Yu , Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076
-
[3]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[4]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[5]
Jie Li , Huida Qian , Deyang Pan , Wenjing Wang , Daliang Zhu , Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076
-
[6]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[7]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[8]
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
-
[9]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[10]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[11]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[12]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[13]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[14]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[15]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[16]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[17]
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
-
[18]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[19]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[20]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[1]
Metrics
- PDF Downloads(1303)
- Abstract views(3507)
- HTML views(55)