Citation: CHEN Shu-Hai, XU Yao, LÜ Bao-Liang, WU Dong. Microwave-Assisted Hydrothermal Synthesis of Ag-Loaded Titania Nanotubes and Their Photocatalytic Performance[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2933-2938. doi: 10.3866/PKU.WHXB20112933 shu

Microwave-Assisted Hydrothermal Synthesis of Ag-Loaded Titania Nanotubes and Their Photocatalytic Performance

  • Received Date: 20 July 2011
    Available Online: 19 October 2011

    Fund Project: 国家自然科学基金(10835008)资助项目 (10835008)

  • Ag-loaded titania nanotubes were synthesized by a microwave-assisted hydrothermal method and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS), and UV-visible (UV-Vis) diffuse reflectance spectroscopy. The titania nanotubes were found to be in the anatase phase after calcination. The length of the synthesized titania nanotubes was about 200 nm, the average outer diameter was 7-8 nm, the inner diameter was 5-6 nm and the specific surface area was found to be 371 m2·g-1. With Ag loading the silver atoms did not enter the lattices of the nanotubes but dispersed over the nanotube surface. Ag-loading had no effect on the nanostructure and the crystal phase of the TiO2 nanotubes. The Ag-loaded titania nanotubes showed obvious visible light absorption and enhanced visible photocatalytic performance. The photocatalytic activity was evaluated by the photodegradation of a Rhodamine B aqueous solution under visible light. Compared with Ag-loaded P25 and pure titania nanotubes the Ag-loaded titania nanotubes enhanced the photoactivity and reached the maximum activity at a Ag/Ti molar ratio of 0.5%.
  • 加载中
    1. [1]

      (1) Jiang, Z.;Yang, F.; Luo, N.; Chu, B.; Sun, D.; Shi, H. H.; Xiao, T. C.; Edwards. P. P. Chem Commun. 2008, No. 47, 6372.

    2. [2]

      (2) Jaturong, J.; Yoshikazu, S.; Susumu, Y. Catal Commun. 2008, 9, 1265.  

    3. [3]

      (3) Ikeda.T.; Nomoto.T.; Eda. K.; Mizutani. Y.; Kato. H.; Kudo. A.; Onishi. H. J. Phys. Chem. C 2008, 112, 1167.  

    4. [4]

      (4) Yu, A. M.;Wu, G. J.; Zhang, F. X.; Yang, Y. L.; Guan, N. J. Catal Lett. 2009, 129, 507.  

    5. [5]

      (5) Kudo, A.; Niishiro, R.; Iwase, A.; Kato, H. Chem. Phys. 2007, 339, 104.  

    6. [6]

      (6) Kowalska, E.; Mahaney, O. O. P.; Abe, R.; Ohtani, B. Phys. Chem. Chem. Phys. 2010, 12, 2344.

    7. [7]

      (7) Kowalska, E.; Abe, R.; Ohtani, B. Chem. Commun. 2009, No. 2, 241.

    8. [8]

      (8) Sakthivel, S.; Shankar, M. V.; Palanichamy, M.; Arabindoo, B.; Bahnemann, D.W.; Murugesan V. Water Res. 2004, 38, 3001.  

    9. [9]

      (9) Vijayan, B. K.; Dimitrijevic, N. M.;Wu, J.; Gray, K. A. J. Phys. Chem. C 2010, 114, 21262.  

    10. [10]

      (10) Sobana, N.; Muruganadham, M.; Swaminathan, M. J. Mol. Catal. A-Chem. 2006, 258, 124.  

    11. [11]

      (11) Liang, Y. Q.; Cui, Z. D.; Zhu, S. L.; Liu, Y.; Yang, X. J. J. Catal. 2011, 278, 276.  

    12. [12]

      (12) Wen, B. M.; Liu, C. Y.; Liu, Y. Inorg. Chem. 2005, 44, 6503.  

    13. [13]

      (13) Cheng, B.; Le, Y.; Yu, J. G. J. Hazard. Mater. 2010, 177, 971.  

    14. [14]

      (14) Li, X. Y.; Zou, X. J.; Qua, Z. P.; Zhao, Q. D.;Wang, L. Z. Chemosphere. 2011, 83, 674.  

    15. [15]

      (15) Jung, J. H.; Kobayashi, H.; Bommel, K. J. C.; Shinkai, S.; Shimizu, T. Chem. Mater. 2002, 14, 1445.  

    16. [16]

      (16) Zhang, Y. J.; Li, X. F.; Chen, D.; Ma, N. H.; Hua, X. S.;Wang, H.W. Scripta Mater. 2009, 60, 543.  

    17. [17]

      (17) Tsai, C. C.; Teng, H. Chem. Mater. 2004, 16, 4352.  

    18. [18]

      (18) Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.;Walsh, F. C. J. Mater. Chem. 2004, 14, 3370.  

    19. [19]

      (19) Qamar, M.; JKim, S.; Ganguli, A. K. Nanotechnology 2009, 20, 455703.  

    20. [20]

      (20) Long, H. J.;Wang, E. J.; Dong, J. Z.;Wang, L. L.; Cao, Y. Q.; Yang,W. S.; Cao, Y. A. Acta Chim. Sin. 2009, 67, 1533. [龙绘锦, 王恩君, 董江舟, 王玲玲, 曹永强, 杨文胜, 曹亚安, 化学学报, 2009, 67, 1533.]

    21. [21]

      (21) Li, J. X.; Xu, J. H.; Dai,W. L.; Fan, K. N. J. Phys. Chem. C 2009, 113, 8343.  

    22. [22]

      (22) He, Z. Q.; Xie, L.; Song, S.;Wang, C.; Tu, J. J.; Hong, F. Y.; Liu, Q.; Chen, J. M.; Xu, X. H. J. Mol. Catal A-Chem. 2010, 319, 78.  

    23. [23]

      (23) Yang, X.;Wang, Y. H.; Xu, L. L.; Yu, X. D.; Guo, Y. H. J. Phys. Chem. C 2008, 112, 11481.  

    24. [24]

      (24) Wang, P.; Huang, B. B.; Zhang, X. Y.; Qin, X. Y.; Jin, H.; Dai, Y.;Wang, Z. Y.;Wei, J. Y.; Zhan, J.;Wang, S. Y.;Wang, J. P. Whangbo, M. H. Chem. Eur. J. 2009, 15, 1821.  

    25. [25]

      (25) Takirawa, T.;Watanabe, T.; Honda, K. J. Phys. Chem. 1978, 82, 1391.  

    26. [26]

      (26) Kim,W.; Tachikawa, T.; Majima, T.; Li, C.; Kim, H. J.; Choi, W. Energy Environ. Sci. 2010, 3, 1789.  

    27. [27]

      (27) Chen, Q. F.; Shi,W. M.; Xu, Y.Wu, D. Sun,Y. H. Mater. Chem. Phys. 2011, 125, 825.  

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    4. [4]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    5. [5]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    10. [10]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    11. [11]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    12. [12]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    18. [18]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    19. [19]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    20. [20]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

Metrics
  • PDF Downloads(1303)
  • Abstract views(3468)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return