Citation: ZHAN Hong-Quan, JIANG Xiang-Ping, LI Xiao-Hong, LUO Zhi-Yun, CHEN Chao, LI Yue-Ming. Formation Mechanism of Barium Titanate Nanoparticle Aggregations[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2927-2932. doi: 10.3866/PKU.WHXB20112927 shu

Formation Mechanism of Barium Titanate Nanoparticle Aggregations

  • Received Date: 20 July 2011
    Available Online: 10 October 2011

    Fund Project: 国家自然科学基金(91022027, 51062005, 50862005)资助项目 (91022027, 51062005, 50862005)

  • A novel nanoparticle aggregation structure of barium titanate was obtained by the hydrothermal method. Powder X-ray diffraction (XRD) revealed that the aggregates crystallized in the cubic phase. The crystallization of the products became more significant with reaction progress. The growth characteristics of the aggregates was further confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and electron diffraction (ED) spectroscopy. The aggregation was composed of many 5-8 nm nanoparticles by orientation attachment and we found that the ED patterns indicated a single-crystal property for the aggregates. The size of the aggregates was about 60 nm and they grew as the reaction continued. From the results of energy dispersive X-ray (EDX) spectroscopy analysis and kinetics modeling using the Johnson-Mehl-Avrami (JMA) equation, the diffusion nucleation of Ba2+ ion was found to be dominant during the early stages of aggregation formation. The growth process of “diffusion nucleation-orientation attachment”revealed the formation mechanism of barium titanate nanoparticle aggregations.
  • 加载中
    1. [1]

      (1) Pithan, C.; Hennings, D.;Waser, R. Int. J. Appl. Ceram. Technol. 2005, 2, 1.  

    2. [2]

      (2) Lott, J.; Xia, C.; Kosnosky, L.;Weder, C.; Shan, J. Adv. Mater. 2008, 20, 3649.  

    3. [3]

      (3) Guo, H. F.; Zhang, X. T.; Liu, B.; Li, Y.C.; Huang, Y. B.; Du, Z. L. Acta Phys. -Chim. Sin. 2004, 20, 164. [郭惠芬, 张兴堂, 刘兵, 李蕴才, 黄亚彬, 杜祖亮. 物理化学学报, 2004, 20, 164.]

    4. [4]

      (4) Ding, S.W.; Zhai, Y. Q.; Li, Y.;Wang, Z. Q.; Li, J. L. Sci. China Ser. B-Chem. 2000, 43, 283.  

    5. [5]

      (5) Ruan, S. P.; Dong,W.;Wu, F. Q.;Wang, Y.W.; Yu, T.; Peng, Z. H.; Xuan, L. Acta Phys. -Chim. Sin. 2003, 19, 17. [阮圣平, 董玮, 吴凤清, 王永为, 于涛, 彭增辉, 宣丽. 物理化学学报, 2003, 19, 17.]

    6. [6]

      (6) Cui, B.;Wang, X.; Li, Y. D. Chem. J. Chin. Univ. 2007, 28, 1. [崔斌, 王训, 李亚栋. 高等学校化学学报, 2007, 28, 1.]

    7. [7]

      (7) O'Brien, S.; Brus, L.; Murray, C. B. J. Am. Chem. Soc. 2001, 123, 12085.  

    8. [8]

      (8) Zhu, Q. A.; Song, F. P.; Chen,W. P.;Wang, S. F.; Sun, X. F.; Zhang, Q. Chem. J. Chin. Univ. 2006, 27, 1612. [朱启安, 宋方平, 陈万平, 王树峰, 孙旭峰, 张琪. 高等学校化学学报, 2006, 27, 1612.]

    9. [9]

      (9) Urban, J. J.; Yun,W. S.; Gu, Q.; Park, H. J. Am. Chem. Soc. 2002, 124, 1186.  

    10. [10]

      (10) Mao, Y.; Banerjee, S.;Wong, S. S. J. Am. Chem. Soc. 2003, 125, 15718.  

    11. [11]

      (11) Hernandez, B. A.; Chang, K. S.; Fisher, E. R.; Dorhout, P. K. Chem. Mater. 2002, 14, 480.  

    12. [12]

      (12) Nakano, H.; Nakamura, H. J. Am. Ceram. Soc. 2006, 89, 1455.  

    13. [13]

      (13) Buscaglia, M. T.; Viviani, M.; Zhao, Z.; Buscaglia, V.; Nanni, P. Chem. Mater. 2006, 18, 4002.  

    14. [14]

      (14) Hua, Z. H.; Li, D.; Fu, H. Acta Phys. -Chim. Sin. 2009, 25, 145. [华正和, 李东, 付浩. 物理化学学报, 2009, 25, 145.]

    15. [15]

      (15) Wei, J. H.; Shi, J.; Guan, J. G.; Yuan, R. Z. Acta Phys. -Chim. Sin. 2003, 19, 657. [魏建红, 石兢, 官建国, 袁润章. 物理化学学报, 2003, 19, 657.]

    16. [16]

      (16) Wang, T. X.; Yang, C.; Huang, P.; Zhao, G. P.; Li, Y. R. Chin. J. Inorg. Chem. 2009, 25, 1414. [王婷霞, 杨春, 黄平, 赵国平, 李言荣. 无机化学学报, 2009, 25, 1414.]

    17. [17]

      (17) Xia, C. T.; Shi, E.W.; Zhong,W. Z.; Guo, J. K. Sci. China Ser. B- Chem. 1995, 40, 2002.

    18. [18]

      (18) Zhong,W. Z.; Liu, G. Z.; Shi, E.W.; Hua, S. K.; Tang, D. Y.; Zhao, Q. L. Sci. China Ser. B: Chem- 1994, 37, 1288.

    19. [19]

      (19) Li, Q. L.; Chen, S. T.; Yao, P.;Wei, G.; Qu, Y. H. Acta Phys. -Chim. Sin. 2000, 16, 170. [李青莲, 陈寿田, 姚朴, 魏国, 曲永和. 物理化学学报, 2000, 16, 170.]

    20. [20]

      (20) Eckert, J. O.; Hung-Houston, C. C.; Gerstan, B. L.; Lenka, M. M.; E. Riman, R. J. Am. Ceram. Soc 1996, 79, 2929.  

    21. [21]

      (21) Walton, R. I.; Millange, F.; Smith, R. I.; Hansen, T. C.; O' Hare, D. J. Am. Chem. Soc. 2001, 123, 12547.  

    22. [22]

      (22) Testino, A.; Buscaglia, V.; Buscaglia, M. T.; Viviani, M.; Nanni, P. Chem. Mater. 2005, 17, 5346.  

    23. [23]

      (23) Testino, A.; Buscaglia, M. T.; Buscaglia, V.; Viviani, M.; Bottino, C.; Nanni, P. Chem. Mater. 2004, 16, 1536.  

    24. [24]

      (24) Shi, E.W.; Xia, C. T.;Wang, B. G.; Zhong,W. Z. J. Inorg. Mater. 1996, 11, 193. [施尔畏, 夏长泰, 王步国, 仲维卓. 无机材料学报, 1996, 11, 193.]

    25. [25]

      (25) Shi, E.W.; Chen, Z. Z.; Yuan, R. L.; Zheng, Y. Q. Hydrothermal Crystallography. Scicne Press: Beijing, 2004; pp 222-249. [施尔畏, 陈之战, 元如林, 郑燕青. 水热结晶学. 北京: 科学出版社, 2004: 222-249.]

    26. [26]

      (26) Penn, R. L.; Banfield, J. F. Geochim. Cosmochim. Acta 1999, 63, 1549.  

    27. [27]

      (27) Penn, R. L.; Banfield, J. F. Science 1998, 281, 969.  

    28. [28]

      (28) Hou, R. Z.; Ferreira, P.; Vilarinho, P. M. Chem. Mater. 2009, 21, 3536.  

    29. [29]

      (29) Wang, T. X.; Colfen, H.; Antonietti, M. J. Am. Chem. Soc. 2005, 127, 3246.  

    30. [30]

      (30) Colfen, H.; Antonietti, M. Angew. Chem. Inter. Edit. 2005, 44, 5576.  

    31. [31]

      (31) Wang, T.; Antonietti, M.; Cölfen, H. Chem. Eur. J. 2006, 12, 5722.  

    32. [32]

      (32) Liu, Z.;Wen, X. D.;Wu, X. L.; Gao, Y. J.; Chen, H. T.; Zhu, J.; Chu, P. K. J. Am. Chem. Soc. 2009, 131, 9405.  

    33. [33]

      (33) Nassif, N.; Pinna, N.; Gehrke, N.; Antonietti, M.; Jager, C.; Colfen, H. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 12653.  

    34. [34]

      (34) Croker, D.; Loan, M.; Hodnett, B. K. Cryst. Growth Des. 2009, 9, 2207.  

    35. [35]

      (35) Zhou, Y.; Antonova, E.; Bensch,W.; Patzke, G. R. Nanoscale 2010, 2, 2412.  

  • 加载中
    1. [1]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    2. [2]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    3. [3]

      Haiying Jiang Huilin Guo Yongliang Cheng Tongyu Xu Jiquan Liu Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091

    4. [4]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    5. [5]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    6. [6]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    7. [7]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    8. [8]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    9. [9]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    10. [10]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    17. [17]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    18. [18]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    19. [19]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    20. [20]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

Metrics
  • PDF Downloads(1035)
  • Abstract views(3183)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return