Citation: CAI Qian, LIANG Xiao-Juan, ZHONG Jia-Song, SHAO Ming-Guo, WANG Yun, ZHAO Xiao-Wei, XIANG Wei-Dong. Synthesis and Characterization of Sphere-Like Cu2ZnSnS4 Nanocrystals by Solvothermal Method[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2920-2926. doi: 10.3866/PKU.WHXB20112920
-
A simple solvothermal route has been successfully used to prepare Cu2ZnSnS4 nanocrystals using metal chloride and L-cysteine as precursors at 180 °C for 16 h. L-cysteine was used as the sulfide source and complexing agent. The phase, structure, morphology, and optical properties of the assynthesized products were characterized by powder X-ray diffraction (XRD), field-emission scan electron microscopy (FESEM), energy dispersive spectrometry (EDS), high-resolution electron transmission microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-Vis) spectrophotometer. The results showed that pure kesterite-type Cu2ZnSnS4 nanocrystals were prepared under this condition and the diameters of the microspheres were about 400-800 nm while the microspheres consisted of nanoflakes with thickness of 20 nm. The band gap of CZTS nanoparticles was about 1.58 eV,which was close to the optimum band gap of thin film solar cells. A possible formation mechanism was also discussed.
-
Keywords:
-
Cu2ZnSnS4 nanocrystal
, - Solvothermal method,
- L-cysteine,
- Solar cell
-
-
-
[1]
(1) Repins, I.; Contreras, M. A.; Egaas, B. Progress in Photovoltaics: Research and Applications 2008, 16(3),235.
-
[2]
(2) Habas, S. E.; Platt, H. A. S.; Hest, M. F. A.; Ginley, D. S. Chem. Rev. 2010, 110, 6571.
-
[3]
(3) Katagiri, H.; Sasaguchi, N.; Hando, S.; Hoshino, S.; Yokota, T. Preparation and Evaluation of Cu2ZnSnS4 Thin Films by Sulfurization of E-B Evaporated Precursor. In Technical Digest of the 9th International Photovoltaic Science and Engineering Conference, 9th International Conference of Photovoltaic Science and Engineering Conference, Miyazaki, Nov 11-15, 1996; Yang, L.;Willing, F.; Rajan, K.; Eds.; Elsevier: Amsterdam. 1996; 745.
-
[4]
(4) Katagiri, H. Thin Solid Films 2005, 480 -481, 426.
-
[5]
(5) Katagiri, H.; Jimbo, K.; Yamada, S.; Kamiura, T.; Maw,W. S.; Fukano, T.; Motohiro, T. Appl. Phys. Exp. 2008, 1, 041201.
-
[6]
(6) Guo, Q. J.; Hillhouse, H.W.; Agrawal. R. J. Am. Chem. Soc. 2009, 131, 11672.
-
[7]
(7) Ennaouia, A.; Lux-Steiner, M.;Weber, A.; Abou-Ras, D.; Kötschau, I.; Schock, H.W.; Schurr, R.; Hölzing, A.; Jost, S.; Hock, R.; Voβ, T.; Schulze, J.; Kirbs, A. Thin Solid Films 2009, 517, 2511.
-
[8]
(8) Yoo, H.; Kim, J. H. Sol. Energy Mater. Sol. Cells 2011, 95, 239.
-
[9]
(9) Liu, F. Y.; Li, Y.; Zhang, K.;Wang, B.; Yan, C.; Lai, Y. Q.; Zhang, Z.; Li, J.; Liu, Y. X. Sol. Energy Mater. Sol. Cells 2010, 94, 2431.
-
[10]
(10) Yusuke, M.; Kunihiko, T.; Masatoshi, O.; Noriko, M.; Hisao, U. Jpn. J. Appl. Phys. 2008, 47(1), 596.
-
[11]
(11) Chan, C. P.; Lam, H.; Surya, C. Sol. Energy Mater. Sol. Cells 2010, 94, 207.
-
[12]
(12) Araki, H.; Kubo, Y. Sol. Energy Mater. Sol. Cells 2009, 93, 996.
-
[13]
(13) Riha, S. C.; Parkinson, B. A.; Prieto, A. L. J. Am. Chem. Soc. 2009, 131,12054.
-
[14]
(14) Riha, S. C.; Fredrick, S. J.; Sambur, J. B.; Liu, Y. J.; Prieto, A. L.; Parkinson, B. A. Appl. Mater. Interfaces 2011, 3 (1), 58.
-
[15]
(15) Cao, M.; Shen, Y. J. Cryst. Growth 2011, 318 (1),1117.
-
[16]
(16) Zhou, Y. L.; Zhou,W. H.; Du, Y. F.; Mei, L.;Wu, S. X. Mater Lett. 2011, 65 (11),1535.
-
[17]
(17) Guo, P. Z.; Han, G. T.;Wang, B. Y.; Zhao, X.S. Acta Phys. -Chim. Sin. 2010, 26 (9), 2557. [郭培志, 韩光亭, 王宝燕, 赵修松. 物理化学学报, 2010, 26 (9), 2557.]
-
[18]
(18) Lanosa, J; Buljana, A.; Mujica, C. J. Alloy. Comp. 1996, 234, 40.
-
[19]
(19) Ettema, A.; Haas, C. J. Phys. Condens. Matter 1993, 5, 3817.
-
[20]
(20) Hu, H. M.; Deng, C. H.; Sun, M.; Zhang, K. H. Chin. J. Inorg. Chem. 2010, 26 (7), 1189. [胡寒梅,邓崇海,孙梅, 张克华.无机化学学报, 2010, 26 (7), 1189.]
-
[21]
(21) Zhang, B.; Ye, X. C.; Hou,W. Y.; Zhao, Y.; Xie, Y. J. Phys. Chem. B 2006, 110 (18), 243.
-
[22]
(22) Gao, F.; Lu, Q. Y.; Meng, X. K.; Komarneni, S. J. Mater. Sci. 2008, 43, 2377.
-
[23]
(23) Chen, X. Y.; Zhang, X. F.; Shi, C.W. Solid State Commun. 2005, 134, 613.
-
[24]
(24) Zhong, J. S.; Hu, J.; Cai,W.; Yang, F.; Liu, L. J.; Liu, H. T.; Yang, X. Y.; Liang, X. J.; Xiang,W. D. J. Alloy. Compd. 2010, 501, 15.
-
[1]
-
-
[1]
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
-
[2]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[3]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[4]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[5]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[6]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
-
[7]
Junmei FAN , Wei LIU , Ruitao ZHU , Chenxi QIN , Xiaoling LEI , Haotian WANG , Jiao WANG , Hongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120
-
[8]
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
-
[9]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[10]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[11]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[12]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[13]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[14]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[15]
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
-
[16]
Feiyang Liu , Liuhong Song , Miaoyu Fu , Zhi Zheng , Gang Xie , Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037
-
[17]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[18]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[19]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[20]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[1]
Metrics
- PDF Downloads(2341)
- Abstract views(3619)
- HTML views(50)