Citation: ZHANG Ying-Ying, CAO Hong-Yu, TANG Qian, ZHENG Xue-Fang. Interactions between Different Classes of Surfactants and Metmyoglobin[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2907-2914. doi: 10.3866/PKU.WHXB20112907 shu

Interactions between Different Classes of Surfactants and Metmyoglobin

  • Received Date: 29 July 2011
    Available Online: 13 October 2011

    Fund Project: 国家自然科学基金(20871024) (20871024) 辽宁省高校创新团队(2006T002, 2008T005, 2009T003) (2006T002, 2008T005, 2009T003) 辽宁省教育厅(2009A069, 2009A071) (2009A069, 2009A071)大连市科技计划(2008E11SF170)资助项目 (2008E11SF170)

  • Complexes of horse metmyoglobin (metMb) with the anionic surfactants sodium bis(2- ethylhexyl) sulfosuccinate (AOT) and sodium dodecyl benzene sulfonate (SDBS), the cationic surfactants dodecyl trimethylammonium bromide (CTAB) and dodecyltrimethyl ammonium bromide (DTAB), and the zwitterionic surfactant 3-[(3-cholamidopropyl) dimethylammonio] propanesulfonate (CHAPS) were investigated by UV-Vis absorption, synchronous fluorescence emission, and circular dichroism (CD) spectroscopy. Experimental results show that the anionic and cationic surfactants can interact with metMb intensively depending on the surfactant concentration. The UV-Vis spectra indicate that AOT and SDBS interact with metMb at low concentrations. The addition of AOT (or SDBS) causes the formation of a six-coordinated low-spin heme (6-cLs) hemichrome as is evident from the red shift of the Soret band, the intensity decrease, concomitant appearance of two new Q bands, and the disappearance of ligandto- metal charge transfer (LMCT). The surfactants disturb the Tyr and Trp microenvironment and change the second structure parameter of metMb while the α-helix content decreases. However, the interaction between metMb and CTAB (or DTAB) is different. They cannot disturb heme at very low concentrations but can disturb the Tyr and Trp microenvironment. CTAB and DTAB aggregates can convert metMb to a five-coordinated low-spin heme as shown by the blue shift of the Soret band and cause the heme monomer to leave the hydrophobic cavity of metMb through electrostatic attraction mainly. DTAB/metMb complexes behave in a slightly different way to CTAB/metMb because of their special structure. In contrast, no interaction is evident between the zwitterionic surfactant over a large range of concentrations because of the neutral charge of CHAPS, which precludes an effective electrostatic attraction between the ionic sites of CHAPS and a protein. The significant distance between the ionic sites with opposite charges in metMb precludes a double ionic interaction for each CHAPS surfactant molecule despite the presence of two oppositely charged ionic sites in the CHAPS molecule. Therefore, proteins interact with surfactants in multifarious ways and this depends on the surfactant species, concentration, and structure.
  • 加载中
    1. [1]

      (1) Orioni, B.; Roversi, M.; La Mesa, C.; Asaro, C.; Asaro, F.; Pellizer, G.; Errico, G. D. J. Phys. Chem. B 2006, 110, 12129.  

    2. [2]

      (2) Stenstam, A.; Montalvo, G.; Grillo, I.; Gradzielski, M. J. Phys. Chem. B 2003, 107, 12331.  

    3. [3]

      (3) Kaca,W.; Roth, R. I.; Vandegriff, K. D.; Chen, G. C.; Kuypers, F. A.;Winslow, R. M.; Levin, J. Biochemistry 1995, 34, 11176.  

    4. [4]

      (4) Rupon, J.W.; Domin , S. R.; Smith, S. V.; Gummadib, B. K.; Shields, H.; Ballas, S. K.; King, S. B.; Kim-Shapiro, D. B. Biophys. Chem. 2000, 84, 1.  

    5. [5]

      (5) Ray, A.; Friedman, B. A.; Friedman, J. M. J. Am. Chem. Soc. 2002, 124, 7270.  

    6. [6]

      (6) Sadrzadeh, S. M.; Graf, E.; Panter, S. S.; Hallaway, P. E.; Eaton, J.W. J. Biol. Chem. 1984, 259, 14354.

    7. [7]

      (7) Chakraborty, T.; Chakraborty, I.; Moulik, S. P.; Ghosh, S. Langmuir 2009, 25, 3062.  

    8. [8]

      (8) Sau, A. K.; Currell, D.; Mazumdar, S.; Mitra, S. Biophys. Chem. 2002, 98, 267.  

    9. [9]

      (9) Ajloo, D.; Moosavi-Movahedi, A. A.; Hakimelahi, G. H.; Saboury, A. A.; Gharibi, H. Colloid Surf. B: Biointerfaces 2002, 26, 185.  

    10. [10]

      (10) Liu,W. J.; Guo, X.; Guo, R. Int. J. Biol. Macromol. 2007, 41, 548.  

    11. [11]

      (11) Eaton,W. A.; Hochstrasser, R. M. J. Chem. Phys. 1968, 49, 985.  

    12. [12]

      (12) Strittmatter, P.; Velick, S. F. J. Biol. Chem. 1956, 221, 253.

    13. [13]

      (13) Moreira, L. M.; Poli, A. L.; Costa-Filho, A. J.; Imasato, H. Biophys. Chem. 2006, 124, 62.  

    14. [14]

      (14) Zhou, H.W.; Cao, H. Y.; Tang, Q.; Li, J. J.; Zheng, X. F. Chin. J. Inorg. Chem. 2011, 27, 445. [周华伟, 曹洪玉, 唐乾, 李进京, 郑学仿. 无机化学学报, 2011, 27, 445.]

    15. [15]

      (15) Miller, R.; Alahverdjieva, V. S.; Fainerman, V. B. Soft Matter 2008, 4, 1141.  

    16. [16]

      (16) Jian, J.; Du, J. Y.; Feng, Y. Y.; Yang, X. J.; Lu, T. H. Chin. J. Anal. Chem. 2001, 29, 219. [剑菊, 杜江燕, 冯玉英, 杨秀娟, 陆天虹. 分析化学, 2001, 29, 219.]

    17. [17]

      (17) Santia , P. S.; Moreira, L. M.; Almeida, E. V.; Tabak, M. Biochim. Biophys. Acta 2007, 1770, 506.

    18. [18]

      (18) Tofani, L.; Feis, A.; Snoke, R. E.; Berti, D.; Baglioni, P.; Smulevich, G. Biophys J. 2004, 87, 1186.  

    19. [19]

      (19) Boffi, A.; Das, T. K.; Longa, S.; Spagnuolo, C.; Rousseau, D. L. Biophys. J. 1999, 77, 1143.  

    20. [20]

      (20) Angersen, K. K.;Westh, P.; Otzen, D. E. Langmuir 2008, 24, 399.  

    21. [21]

      (21) Moreira, L. M.; Santia , P. S.; Almeida, E. V.; Tabak, M. Colloid Surf. B: Biointerfaces 2008, 61, 153.  

    22. [22]

      (22) Savelli, G.; Spreti, N.; Profio, P. D. Curr. Opin. Colloid Interface Sci. 2000, 5, 111.  

    23. [23]

      (23) Chen, Y. H.; Yang, J. T.; Chau, K. H. Biochemistry 1974, 13, 3335.

    24. [24]

      (24) Taheri-Kafrani, A.; Asgari-Mobarakeh, E.; Bordbar, A. K.; Haertlé, T. Colloid Surf. B: Biointerfaces 2010, 75, 268.  

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    5. [5]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    6. [6]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    7. [7]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    8. [8]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    9. [9]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    10. [10]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    11. [11]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    18. [18]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    19. [19]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(1033)
  • Abstract views(2840)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return