Citation: PAN Rui-Li, FAN Wei-Bin, LI Yu-Ping, LI Xiao-Feng, LI Sha, DOU Tao. Synthesis, Characterization of SSZ-33 Molecular Sieves and Their Performance for the Automobile Tailpipe Hydrocarbon Trap[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2893-2899. doi: 10.3866/PKU.WHXB20112893
-
Using N,N,N-trimethyl-8-ammonium tricyclo [5.2.1.02,6] decane iodide as a structure directing agent, B-SSZ-33 molecular sieves with an excellent price-performance ratio was successfully synthesized by process control over 3-4 days. The synthesis of Al-SSZ-33 was achieved by a post-modification procedure of B-SSZ-33 molecular sieves in an Al(NO3)3 solution. These materials were characterized in detail by various techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), thermogravimetric (TG) analysis, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), N2 adsorption/desorption, temperature programmed desorption of NH3 (NH3-TPD), and solid state 27Al nuclear magnetic resonance (27Al NMR). The temperature programmed desorption characteristics of toluene for the B-SSZ-33 and Al-SSZ-33 samples were obtained to understand the efficacy of these materials as hydrocarbon traps. The results show that Al-SSZ-33 with framework Al was obtained after the post-modification procedures. Compared with B-SSZ-33, Al-SSZ-33 has a higher acid strength and shows a comparatively higher toluene desorption temperature (Tmax). The presence of extra framework Al and Si species in Al-SSZ-33 modifies its pores and results in a higher desorption end temperature (Tend). Therefore, the synthesized Al-SSZ-33 is a novel catalyst for use as a hydrocarbon trap in automobile tailpipes.
-
-
[1]
(1) Elan van, S. P.; Ogura, M.; Davis, M. E.; Okubo, T. J. Phys. Chem. B 2004, 108, 13059.
-
[2]
(2) Dorner, R.W.; Deifallah, M.; Catlow, C. R. A.; Corà, F.; Elan van, S. P.; Okubo, T.; Sankar, G. J. Phys. Chem. C 2008, 112, 4187.
- [3]
-
[4]
(4) Iliyas, A.; Zahedi-Niaki, M. H.; Eic, M.; Kaliaguine, S. Microporous Mesoporous Mat. 2007, 102, 171.
- [5]
-
[6]
(6) Kalser, E.W.; Siegl,W. O.; Henig, Y. I.; Anderson, R.W.; Trinker, F. H. Environ. Sci. Technol. 1991, 25, 2005.
-
[7]
(7) Fernández-García, M.; Iglesias-Juez, A.; Martínez-Arias, A.; Hungría, A. B.;Anderson, J. A.; Conesa, J. C.; Soria, J. J. Catal. 2004, 221, 594.
-
[8]
(8) Park, J. H.; Park, S. J.; Nama, I. S.; Yeo, G. K.; Kil, J. K.; Youn, Y. K. Microporous Mesoporous Mat. 2007, 101, 264.
-
[9]
(9) Gandhi, H. S.; Graham , G.W.; McCabe, R.W. J. Catal. 2003, 216, 433.
-
[10]
(10) Park, J. H.; Park, S. J.; Ahn, H. A.; Nama, I. S.; Yeo, G. K.; Kil, J. K.; Youn, Y. K. Microporous Mesoporous Mat. 2009, 117, 178.
-
[11]
(11) Elan van, S. P.; Ogura , M.; Zhang, Y.; Chino, N.; Okubo, T. Appl. Catal. B 2005, 57, 31.
-
[12]
(12) Lobo, R. F.; Pan, M.; Chan, I.; Medrud, R. C.; Zones, S. I.; Crozier, P. A.; Davis, M. E. J. Phys. Chem. 1994, 98, 12040.
-
[13]
(13) Lobo, R. F.; Pan, M.; Chan, I.; Li, H. X.; Medrud, R. C.; Zones, S. I.; Crozier, P. A.; Davis, M. E. Science 1993, 262, 1543.
-
[14]
(14) Dartt, C. B.; Davis, M. E. Appl. Catal. A 1996, 143, 53.
-
[15]
(15) Jones, C.W.; Zones, S. I.; Davis, M. E. Microporous Mesoporous Mat. 1999, 28, 471.
-
[16]
(16) Adair, B.; Chen, C. Y.;Wan, K. T.; Davis, M. E. Microporous Mater. 1996, 7, 261.
-
[17]
(17) Elan van, S. P. ; Ogura, M.; Ernst, S.; Hartmann, M.; Tontisirin, S.; Davis, M. E.; Okubo, T. Microporous Mesoporous Mat. 2006, 96, 210.
-
[18]
(18) Jones, C.W.; Hwang, S. J.; Okubo, T.; Davis, M. E. Chem. Mater. 2001, 13, 1041.
-
[19]
(19) Hwang, S. J.; Chen, C. Y. ; Zones. S. I. J. Phys. Chem. B 2004, 108, 18535.
-
[20]
(20) Musilová-Pavlacková, Z.; Kubu, M.; Burton, A.W.; Zones, S. I.; Bejblová, M.; Cejka, J. Catal. Lett. 2009, 131, 393.
-
[21]
(21) Zones, S. I.; Francisco, S. Zeolite SSZ-33. US Patent 4963337, 1989-7.
-
[22]
(22) Wei, Y. D.; Yao, J. S.; He, Y. H.; Long, Y. C. Microporous Mesoporous Mat. 1999, 32, 93.
-
[23]
(23) Zhao, J. Q.; Shen, Z. H.; Ju, Y. N.; Zhu, J. Z. Petrochemical Technology 2005, 34, 648. [赵俊桥, 沈志虹, 鞠雅娜, 朱俊哲. 石油化工,2005, 34, 648.]
-
[24]
(24) Mathew, T.; Elan van, S. P.; Yokoi, T.; Tatsumi, T.; Ogura, M.; Kubota, Y.; Shimojima, A.; Okubo ,T. Microporous Mesoporous Mat. 2010, 129, 126.
-
[25]
(25) Dartt, C. B.; Davis, M. E. Appl. Catal. A- Gen. 1996, 143, 53.
-
[26]
(26) Szostak, R. Molecular Sieves: Principles of Synthesis and Identification, 2nd ed.; Blackie Academic and Professional: London, 1998; p 234.
-
[1]
-
-
[1]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[2]
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
-
[3]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[4]
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
-
[5]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[6]
Cuiping Yang , Huiping Ding , Jinpeng Hou , Kai Li , Weiliang Tian . Reform and Exploration of “Comprehensive and Precise Process” Assessment in Chemical Engineering Principle Experimental Course. University Chemistry, 2024, 39(3): 178-190. doi: 10.3866/PKU.DXHX202309087
-
[7]
Jianmin Hao , Ruifeng Wu , Ying Wang , Yijia Bai , Xuechuan Gao , Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103
-
[8]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[9]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[10]
Manman Jin , Zhiguo Lv , Qingtao Niu . Teaching Reformation and Case Study for “Chemical Process Development and Design” Based on “Just-in-Time” Dynamic and Accurate Matching Industrial Needs. University Chemistry, 2024, 39(11): 108-116. doi: 10.12461/PKU.DXHX202403030
-
[11]
Hongwei Ma , Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035
-
[12]
Feng Liang , Desheng Li , Yuting Jiang , Jiaxin Dong , Dongcheng Liu , Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009
-
[13]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[14]
Sifang Zhang , Yanli Tan , Yu Tao , Jiaoyan Zhao , Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067
-
[15]
Yuyang Xu , Ruying Yang , Yanzhe Zhang , Yandong Liu , Keyi Li , Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064
-
[16]
Jingfeng Lan , Li Wu , Guangnong Lu , Liu Yang , Xiaolong Li , Xiangyang Xu , Yongwen Shen , E Yu . Application of 3E Method in the Negative List Management System in Teaching Laboratory. University Chemistry, 2024, 39(4): 54-61. doi: 10.3866/PKU.DXHX202310130
-
[17]
Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073
-
[18]
Yang Chen , Peng Chen , Yuyang Song , Yuxue Jin , Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077
-
[19]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[20]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[1]
Metrics
- PDF Downloads(1034)
- Abstract views(2749)
- HTML views(16)