Citation: PAN Rui-Li, FAN Wei-Bin, LI Yu-Ping, LI Xiao-Feng, LI Sha, DOU Tao. Synthesis, Characterization of SSZ-33 Molecular Sieves and Their Performance for the Automobile Tailpipe Hydrocarbon Trap[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2893-2899. doi: 10.3866/PKU.WHXB20112893 shu

Synthesis, Characterization of SSZ-33 Molecular Sieves and Their Performance for the Automobile Tailpipe Hydrocarbon Trap

  • Received Date: 23 May 2011
    Available Online: 19 September 2011

    Fund Project: 国家自然科学基金(20973123)资助项目 (20973123)

  • Using N,N,N-trimethyl-8-ammonium tricyclo [5.2.1.02,6] decane iodide as a structure directing agent, B-SSZ-33 molecular sieves with an excellent price-performance ratio was successfully synthesized by process control over 3-4 days. The synthesis of Al-SSZ-33 was achieved by a post-modification procedure of B-SSZ-33 molecular sieves in an Al(NO3)3 solution. These materials were characterized in detail by various techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), thermogravimetric (TG) analysis, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), N2 adsorption/desorption, temperature programmed desorption of NH3 (NH3-TPD), and solid state 27Al nuclear magnetic resonance (27Al NMR). The temperature programmed desorption characteristics of toluene for the B-SSZ-33 and Al-SSZ-33 samples were obtained to understand the efficacy of these materials as hydrocarbon traps. The results show that Al-SSZ-33 with framework Al was obtained after the post-modification procedures. Compared with B-SSZ-33, Al-SSZ-33 has a higher acid strength and shows a comparatively higher toluene desorption temperature (Tmax). The presence of extra framework Al and Si species in Al-SSZ-33 modifies its pores and results in a higher desorption end temperature (Tend). Therefore, the synthesized Al-SSZ-33 is a novel catalyst for use as a hydrocarbon trap in automobile tailpipes.
  • 加载中
    1. [1]

      (1) Elan van, S. P.; Ogura, M.; Davis, M. E.; Okubo, T. J. Phys. Chem. B 2004, 108, 13059.  

    2. [2]

      (2) Dorner, R.W.; Deifallah, M.; Catlow, C. R. A.; Corà, F.; Elan van, S. P.; Okubo, T.; Sankar, G. J. Phys. Chem. C 2008, 112, 4187.  

    3. [3]

      (3) Kanazawa, T. Catal. Today 2004, 96, 171.  

    4. [4]

      (4) Iliyas, A.; Zahedi-Niaki, M. H.; Eic, M.; Kaliaguine, S. Microporous Mesoporous Mat. 2007, 102, 171.  

    5. [5]

      (5) Skoglundh, M.; Fridell, E. Top. Catal. 2004, 28, 79.  

    6. [6]

      (6) Kalser, E.W.; Siegl,W. O.; Henig, Y. I.; Anderson, R.W.; Trinker, F. H. Environ. Sci. Technol. 1991, 25, 2005.  

    7. [7]

      (7) Fernández-García, M.; Iglesias-Juez, A.; Martínez-Arias, A.; Hungría, A. B.;Anderson, J. A.; Conesa, J. C.; Soria, J. J. Catal. 2004, 221, 594.  

    8. [8]

      (8) Park, J. H.; Park, S. J.; Nama, I. S.; Yeo, G. K.; Kil, J. K.; Youn, Y. K. Microporous Mesoporous Mat. 2007, 101, 264.  

    9. [9]

      (9) Gandhi, H. S.; Graham , G.W.; McCabe, R.W. J. Catal. 2003, 216, 433.  

    10. [10]

      (10) Park, J. H.; Park, S. J.; Ahn, H. A.; Nama, I. S.; Yeo, G. K.; Kil, J. K.; Youn, Y. K. Microporous Mesoporous Mat. 2009, 117, 178.  

    11. [11]

      (11) Elan van, S. P.; Ogura , M.; Zhang, Y.; Chino, N.; Okubo, T. Appl. Catal. B 2005, 57, 31.  

    12. [12]

      (12) Lobo, R. F.; Pan, M.; Chan, I.; Medrud, R. C.; Zones, S. I.; Crozier, P. A.; Davis, M. E. J. Phys. Chem. 1994, 98, 12040.  

    13. [13]

      (13) Lobo, R. F.; Pan, M.; Chan, I.; Li, H. X.; Medrud, R. C.; Zones, S. I.; Crozier, P. A.; Davis, M. E. Science 1993, 262, 1543.  

    14. [14]

      (14) Dartt, C. B.; Davis, M. E. Appl. Catal. A 1996, 143, 53.  

    15. [15]

      (15) Jones, C.W.; Zones, S. I.; Davis, M. E. Microporous Mesoporous Mat. 1999, 28, 471.  

    16. [16]

      (16) Adair, B.; Chen, C. Y.;Wan, K. T.; Davis, M. E. Microporous Mater. 1996, 7, 261.  

    17. [17]

      (17) Elan van, S. P. ; Ogura, M.; Ernst, S.; Hartmann, M.; Tontisirin, S.; Davis, M. E.; Okubo, T. Microporous Mesoporous Mat. 2006, 96, 210.  

    18. [18]

      (18) Jones, C.W.; Hwang, S. J.; Okubo, T.; Davis, M. E. Chem. Mater. 2001, 13, 1041.  

    19. [19]

      (19) Hwang, S. J.; Chen, C. Y. ; Zones. S. I. J. Phys. Chem. B 2004, 108, 18535.  

    20. [20]

      (20) Musilová-Pavlacková, Z.; Kubu, M.; Burton, A.W.; Zones, S. I.; Bejblová, M.; Cejka, J. Catal. Lett. 2009, 131, 393.  

    21. [21]

      (21) Zones, S. I.; Francisco, S. Zeolite SSZ-33. US Patent 4963337, 1989-7.

    22. [22]

      (22) Wei, Y. D.; Yao, J. S.; He, Y. H.; Long, Y. C. Microporous Mesoporous Mat. 1999, 32, 93.  

    23. [23]

      (23) Zhao, J. Q.; Shen, Z. H.; Ju, Y. N.; Zhu, J. Z. Petrochemical Technology 2005, 34, 648. [赵俊桥, 沈志虹, 鞠雅娜, 朱俊哲. 石油化工,2005, 34, 648.]

    24. [24]

      (24) Mathew, T.; Elan van, S. P.; Yokoi, T.; Tatsumi, T.; Ogura, M.; Kubota, Y.; Shimojima, A.; Okubo ,T. Microporous Mesoporous Mat. 2010, 129, 126.  

    25. [25]

      (25) Dartt, C. B.; Davis, M. E. Appl. Catal. A- Gen. 1996, 143, 53.  

    26. [26]

      (26) Szostak, R. Molecular Sieves: Principles of Synthesis and Identification, 2nd ed.; Blackie Academic and Professional: London, 1998; p 234.

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    5. [5]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    6. [6]

      Cuiping Yang Huiping Ding Jinpeng Hou Kai Li Weiliang Tian . Reform and Exploration of “Comprehensive and Precise Process” Assessment in Chemical Engineering Principle Experimental Course. University Chemistry, 2024, 39(3): 178-190. doi: 10.3866/PKU.DXHX202309087

    7. [7]

      Jianmin Hao Ruifeng Wu Ying Wang Yijia Bai Xuechuan Gao Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103

    8. [8]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    9. [9]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    10. [10]

      Manman Jin Zhiguo Lv Qingtao Niu . Teaching Reformation and Case Study for “Chemical Process Development and Design” Based on “Just-in-Time” Dynamic and Accurate Matching Industrial Needs. University Chemistry, 2024, 39(11): 108-116. doi: 10.12461/PKU.DXHX202403030

    11. [11]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    12. [12]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    13. [13]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    14. [14]

      Sifang Zhang Yanli Tan Yu Tao Jiaoyan Zhao Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067

    15. [15]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    16. [16]

      Jingfeng Lan Li Wu Guangnong Lu Liu Yang Xiaolong Li Xiangyang Xu Yongwen Shen E Yu . Application of 3E Method in the Negative List Management System in Teaching Laboratory. University Chemistry, 2024, 39(4): 54-61. doi: 10.3866/PKU.DXHX202310130

    17. [17]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    18. [18]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    19. [19]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

Metrics
  • PDF Downloads(1034)
  • Abstract views(2749)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return