Citation: YE Qing, HUO Fei-Fei, YAN Li-Na, WANG Juan, CHENG Shui-Yuan, KANG Tian-Fang. Highly Active Au/α-MnO2 Catalysts for the Low-Temperature Oxidation of Carbon Monoxide and Benzene[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2872-2880. doi: 10.3866/PKU.WHXB20112872 shu

Highly Active Au/α-MnO2 Catalysts for the Low-Temperature Oxidation of Carbon Monoxide and Benzene

  • Received Date: 13 June 2011
    Available Online: 29 September 2011

    Fund Project: 国家自然科学基金(20777005) (20777005) 北京市自然科学基金(8082008) (8082008)北京市组织部优秀人才基金(20071D0501500210)资助项目 (20071D0501500210)

  • α-MnO2-supported ld catalysts (xAu/α-MnO2, x=0-7 (corresponding to the Au loading (mass fraction) of 0-7%) were prepared by a deposition- precipitation method using urea as a precipitation agent and characterized by different techniques such as X-ray diffraction (XRD), N2 adsorption-desorption measurements, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and H2 temperature-programmed reduction (TPR). The catalytic activities of the materials were evaluated for the oxidation of CO and benzene. The Au particle size was found to be related to the Au loading of the xAu/ α-MnO2 samples and increased with Au loading. XPS results showed that the mole ratios of O2-/(O22- or O-), Mn4+/Mn3+ and Au3+/Au0 increased upon the addition of Au. The loading of ld over α-MnO2 significantly modified the catalytic activities. The catalytic performance of xAu/α-MnO2 strongly depended on the Au loading, and 3Au/α-MnO2 gained the best activity at T90=80 °C and T90=20 °C for the catalytic oxidation of CO and benzene, respectively. The excellent performance of 3Au/α-MnO2 is associated with highly dispersed Au, od low-temperature reducibility, and a synergism at the interface between theAu and MnO2 nanodomains.
  • 加载中
    1. [1]

      (1) Gardner, S. D.; Hoflund, G. B.; Schryer, D. R.; Schryer, J.; Upchurch, B. T.; Kielin, E. J. Langmuir 1991, 7, 2135.  

    2. [2]

      (2) Li, Q.X.; Zhou, X.J.; Li, J.G.; Xu, C.J. Acta Phys. Chim. Sin. 2010, 26, 1488. [李巧霞, 周小金, 李金光, 徐群杰. 物理化学学报, 2010, 26, 1488.]

    3. [3]

      (3) Li, Y. J.; Zhang, J. J.; Li, N.; Lin, B. X. Acta Phys. -Chim. Sin. 1999, 15, 97. [刘英骏, 张继军, 李能, 林炳雄. 物理化学学报, 1999, 15, 97.]

    4. [4]

      (4) Spivey, J. J. Ind. Eng. Chem. Res. 1987, 26, 2165.  

    5. [5]

      (5) Zwinkels, M. F. M.; Jaras, S. G.; Menon, P. G.; Griffin, T. A. Cat. Rev. -Sci. Eng. 1993, 35, 319.  

    6. [6]

      (6) Taylor, S. H.; Heneghan, C. S.; Hutchings, G. J.; Hudson, I. D. Catal. Today 2000, 59, 249.  

    7. [7]

      (7) Kulshreshtha, S. K.; Gadgil, M. M. Appl. Catal. B 1997, 11, 291.  

    8. [8]

      (8) Luo, M. F.; Yuan, X. X.; Zheng, X. M. Appl. Catal. A 1998, 175, 121.  

    9. [9]

      (9) Ye, Q.; Zhao, J. S.; Huo, F. F.;Wang, J.; Cheng, S. Y.; Kang, T. F.; Dai, H. X. Catal. Today 2011, in press

    10. [10]

      (10) Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 16, 405

    11. [11]

      (11) Zhang, X.; Shi, H.; Xu, B. Q. Catal. Today 2007, 122, 330.  

    12. [12]

      (12) Zhao, J. J.; Zhang, P.; Song,W.; Huang, X. M.; Xu, Y. D. Acta Chim. Sin. 2007, 65 (18), 2007. [邵建军, 张平, 宋巍, 黄秀敏, 徐奕德, 申文杰. 化学学报, 2007, 65 (18), 2007.]

    13. [13]

      (13) Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. J. Catal. 1993, 144, 175.  

    14. [14]

      (14) Wu, Z. B.; Sheng, Z. Y.; Liu, Y.;Wang, H. Q.; Mo, J. S. J. Hazard. Mater. 2011, 185, 1053.  

    15. [15]

      (15) Kijima, N.; Yasuda, H.; Sato, T.; Yoshimura, Y. J. Solid State Chem. 2001, 59, 94

    16. [16]

      (16) Chen, Y.; Liu, C.; Li, F.; Cheng, H. M. J. Alloy. Compd. 2005, 397, 282.  

    17. [17]

      (17) Carno, J.; Ferrandon, M.; Bjornbom, E.; Jaras, S. Appl. Catal. A 1997, 155, 265.  

    18. [18]

      (18) Tsuji, Y.; Imamura, S. In New Aspects of Spillover Effect in Catalysis; Inui, T.; Fujimoto, K.; Uchijima, T.; Masai, M. Eds. Elsevier: Amsterdam, 1993; 77, p 405.

    19. [19]

      (19) Xu, R.;Wang, X.;Wang, D. S.; Zhou, K. B.; Li, Y. D. J. Catal. 2006, 237, 426.  

    20. [20]

      (20) Hamoudi, S.; Larachi, F.; Adnot, A.; Sayari, A. J. Catal. 1999, 185, 333.  

    21. [21]

      (21) Madier, Y.; Descorme, C.; Le vic, A.M.; Duprez, D. J. Phys. Chem. B 1999, 103, 10999.  

    22. [22]

      (22) Muilenbergy, G. E. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Minnesota, 1979.

    23. [23]

      (23) Zhen, M.; Steve, H. O.; Sheng, D. J. Mol. Catal. A- Chem. 2007, 273, 186.  

    24. [24]

      (24) Hvolbaek, B.; Janssens, T.V.W.; Clausen, B.S.; Falsig, H.; Christensen, C.H.; Norskov, J.K. Nanotoday 2007, 2, 14.

    25. [25]

      (25) Ahn, H. G.; Lee, D. J. Res. Chem. Intermed. 2002, 28, 451.  

    26. [26]

      (26) Lambert, S.; Cellier, C.; Gaigneaux, E. M.; Pirard, J. P.; Heinrichs, B. Catal. Commun. 2007, 8, 1244.  

    27. [27]

      (27) Finch, R. M.; Hodge, N. A.; Hutchings, G. J.; Meagher, A.; Pankhurst, Q. A.; Siddiqui, M. R. H.;Wagner, F. E.; Whyman, R. Phys. Chem. Chem. Phys. 1999, 1, 485.

    28. [28]

      (28) Valden, M.; Lai, X.; odman, D.W. Science 1998, 281, 1647.  

    29. [29]

      (29) Henao, J. D.; Caputo, T.; Yang, J. H.; Kung, M.; Kung, H. H. J. Phys. Chem. B 2006, 110, 8689.  

    30. [30]

      (30) Taralunga, M.; Mijoin, J.; Magnoux, P. Applied Catalysis BEnvironmental 2005, 60, 163.  

    31. [31]

      (31) Grisel, R. J. H.; Nieuwenhuys, B. E. J. Catal. 2001, 199, 48.  

    32. [32]

      (32) Mars, P.; van Krevelen, D.W. Chem. Eng. Sci. Spec. Suppl. 1954, 3, 41.

    33. [33]

      (33) Liu, H.; Kozlov, A. I.; Kozlova, A. P.; Shida, T.; Iwasawa, Y. Phys. Chem. Chem. Phys. 1999, 1, 2851.

    34. [34]

      (34) Venezia, A. M.; Pantaleo, G.; Lon , A.; Carlo, G. D.; Casaletto, M. P.; Liotta, F. L.; Deganello, G. J. Phys. Chem. B 2005, 109, 2821.  

    35. [35]

      (35) Arena, F.; Trunfio, G.; Negro, J.; Fazio, B.; Spadaro, L. Chem. Mater. 2007, 19, 2269.  

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    6. [6]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    9. [9]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    14. [14]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

Metrics
  • PDF Downloads(1203)
  • Abstract views(3295)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return