Citation: HU Xian-Chao, CHEN Dan, SHI Bin-Bin, LI Guo-Hua. Preparation of Tungsten Carbide and Titania Nanocomposite and Its Electrocatalytic Activity for Methanol[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2863-2871. doi: 10.3866/PKU.WHXB20112863 shu

Preparation of Tungsten Carbide and Titania Nanocomposite and Its Electrocatalytic Activity for Methanol

  • Received Date: 21 July 2011
    Available Online: 7 September 2011

    Fund Project: 国家自然科学基金(21173193) (21173193)浙江省自然科学基金(Y406094, Y4080209) (Y406094, Y4080209)浙江省科技计划(2007F0039)资助项目 (2007F0039)

  • Tungsten carbide and titania nanocomposite with a core-shell structure was fabricated by combing chemical immersion with carbonization-reduction, using titania nanopowder as a support and tungsten hexachloride as a tungsten precursor. The crystal phase, morphology, microstructure, and chemical composition of the sample were characterized by X-ray diffraction, transmission electron microscopy, high resolution scanning transmission imaging, and energy dispersive spectroscopy (EDS). The results show that the crystal phase of the sample is composed of rutile, Ti4O7, WC, W2C, and WxC. The tungsten carbide particles coat onto the surface of the rutile support and thus form a core-shell structure. The electrocatalytic activity of the sample for methanol was measured by cyclic voltammetry with a three-electrode system in an alkaline solution. The results indicate that the electrocatalytic activity of the sample is higher than that of a pure titania phase and WC. The improvement in electrocatalytic activity is related to the reduction-carbonization time, the W to Ti molar ratio, the completeness of the shell layer in the core-shell structure, and the crystal phase of the sample. These factors can be correlated to a synergistic effect between titania and tungsten carbide in the nanocomposite. These imply that titania is a suitable support for the enhancement of the electrocatalytic activity of tungsten carbide.
  • 加载中
    1. [1]

      (1) Levy, R. B.; Boudart, M. Science 1973, 181, 547.  

    2. [2]

      (2) Böhm, H. Nature 1970, 227, 483.  

    3. [3]

      (3) Xiao, T. C.; Hanif, A.; York, A. P. E.; Green, J. S. Phys. Chem. 2002, 4, 3522.  

    4. [4]

      (4) Xue, H. X.; Song, G. X.;Wang, L.; Chen, J. M. Acta Chim. Sin. 2003, 61, 208. [薛华欣, 宋国新, 王琳, 陈建民. 化学学报, 2003, 61, 208.]

    5. [5]

      (5) Zhang, Y. F.; Lin,W.;Wang,W. F.; Li, J. Q. Acta Chim. Sin. 2004, 62, 1041. [章永凡, 林伟, 王文峰, 李俊篯. 化学学报, 2004, 62, 1041.]

    6. [6]

      (6) Sinfelt, J. H.; Yate, D. J. C. J. Catal. 1968, 10, 362.  

    7. [7]

      (7) Lee, J. S.; Volpe, L.; Ribeiro, F. H.; Boudart, M. J. Catal. 1988, 112, 44.  

    8. [8]

      (8) Keller, V.;Wehrer, P.; Garin, F.; Ducros, R.; Maire, G. J. Catal. 1997, 166, 125.  

    9. [9]

      (9) Fleischmann, R.; Boehm, H. Electrochim. Acta 1977, 20, 1123.

    10. [10]

      (10) Ma, C. A.; Yang, Z.W.; Zhou, Y. H.; Zha, Q. X. Acta Phys. -Chim. Sin. 1990, 6, 622. [马淳安, 杨祖望, 周运鸿, 查全性. 物理化学学报, 1990, 6, 622.]

    11. [11]

      (11) Hwu, H. H.; Chen, J. G. J. Phys. Chem. B 2001, 105, 10037.  

    12. [12]

      (12) Hwu, H. H.; Polizzotti, B. D.; Chen, J. G. J. Phys. Chem. B 2001, 105, 10045.  

    13. [13]

      (13) Hwu, H. H.; Chen, J. G. J. Phys. Chem. B 2003, 107, 2029.  

    14. [14]

      (14) Baresel, D.; Gellert,W.; Heidemeyer, J.; Scharner, P. Angew. Chem. Int. Edit. 1971, 10, 194.  

    15. [15]

      (15) Miles, R. Chem. Tech. Biotechnol. 1980, 30, 35.

    16. [16]

      (16) Tauster, S. J.; Fung, S. C.; Garten, R. L. J. Am. Chem. Soc. 1978, 100, 170.  

    17. [17]

      (17) Yao, G. X.; Shi, B. B.; Li, G. H.; Zheng, Y. F. Acta Phys. -Chim. Sin. 2010, 26, 1317. [姚国新, 施斌斌, 李国华, 郑遗凡. 物理化学学报, 2010, 26, 1317.]

    18. [18]

      (18) Wang, X. J.; Ma, C. A.; Li, G. H.; Zheng, Y. F. Acta Chim. Sin. 2009, 67, 367. [王晓娟, 马淳安, 李国华, 郑遗凡. 化学学报, 2009, 67, 367.]

    19. [19]

      (19) Shi, B. B.; Yao, G. X.; Li, G. H.; Zheng, Y. F. Chin. J. Catal. 2010, 31, 466. [施斌斌, 姚国新, 李国华, 郑遗凡. 催化学报, 2010, 31, 466.]

    20. [20]

      (20) Cha, C. S.; Li, C. M.; Yang, H. X.; Liu, P. F. J. Electroanal. Chem. 1994, 368, 47.  

    21. [21]

      (21) Tan,W. Y.; Li, G.; Yang, H.; Xing,W.; Lu, T. H. Journal of Nanjing Normal University (Natural Science Edition) 2003, 26, 111. [唐文亚, 李纲, 杨辉, 邢巍, 陆天虹. 南京师大学报 (自然科学版), 2003, 26, 111. ]

    22. [22]

      (22) Zhao, Y. R.; Lan, H. X.; Dan, B. B.; Tian, J. N.; Yang, X. L.; Wang, F. Y. Acta Phys. -Chim. Sin. 2010, 26, 2255. [赵彦春, 兰黄鲜, 邓彬彬, 田建袅, 杨秀林, 王凤阳. 物理化学学报, 2010, 26, 2255.]

    23. [23]

      (23) Ding, L. X.;Wang, S. R.; Zheng, X. L.; Chen, Y.; Lu, T. H.; Cao, D. X.; Tang, Y.W. Acta Phys. -Chim. Sin. 2010, 26, 1311. [丁良鑫, 王士瑞, 郑小龙, 陈煜, 陆天虹, 曹殿学, 唐亚文. 物理化学学报, 2010, 26, 1311.]

    24. [24]

      (24) Peng, C.; Cheng, X.; Zhang, Y.; Chen, L.; Fan, Q. B. Acta Phys. -Chim. Sin. 2004, 20, 436. [彭程, 程璇, 张颖, 陈羚, 范钦柏. 物理化学学报, 2004, 24, 436.]

    25. [25]

      (25) Frelink, T.; Visscher,W.; Van Veen, J. A. R. J. Electroanal. Chem. 1995, 382, 65.  

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    5. [5]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    6. [6]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    9. [9]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    10. [10]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    19. [19]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(1206)
  • Abstract views(3246)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return