Citation: LI Qing-Wu, WEI Zi-Dong, CHEN Si-Guo, QI Xue-Qiang, LIU Xiao, DING Wei, . PtSnCo/C Anode Catalyst for Methanol Oxidation[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2857-2862. doi: 10.3866/PKU.WHXB20112857 shu

PtSnCo/C Anode Catalyst for Methanol Oxidation

  • Received Date: 4 May 2011
    Available Online: 5 September 2011

    Fund Project: 国家自然科学基金(20906107, 20936008) (20906107, 20936008) 重庆大学985 创新人才培养建设计划(101061136) (101061136)中央高校基础研究基金(CDJXS10221141,11132229)资助项目 (CDJXS10221141,11132229)

  • A binary metallic catalyst (PtSn/C) and a ternary metallic catalyst (PtSnCo/C) with a metal mass fraction of 20% were prepared by borohydride reduction and subsequent hydrothermal treatment in a glycol liquid phase. The structure and composition of the as-prepared electrocatalysts were characterized by X-ray diffraction (XRD) and energy-dispersive spectrometry (EDS). Their activity and stability for the catalysis of methanol oxidation were evaluated by anodic linear sweep voltammetry (LSV), cyclic voltammetry (CV), and the anodic stripping of a pre-adsorbed CO monolayer. We found that the PtSnCo/C catalyst gave the best catalytic activity for the methanol oxidation of all the catalysts including the commercial JM-PtRu/C catalyst. After 100 cycles, the peak current of methanol oxidation for the PtSn/C catalyst rapidly decreased to 11% of its initial peak current but PtSnCo/C decreased to only 50%. This result suggests that the PtSnCo/C catalyst has better chemical stability for the catalysis of methanol oxidation compared to the PtSn/C catalyst. The more negative onset potential of methanol oxidation for the PtSnCo/C catalyst relative to pre-adsorbed CO oxidation implies that the intermediates of methanol oxidation on the PtSnCo/C catalyst may be ones, which can be more easily oxidized than CO, instead of CO.
  • 加载中
    1. [1]

      (1) Prater, K. B. J. Power Sources 1996, 61, 105.  

    2. [2]

      (2) Doo, H. J.; Chang, H. L.; Chang, S. K.; Dong, R. S. J. Power Sources 1998, 71, 169.  

    3. [3]

      (3) Xu, Q. J.; Zhou, X. J.; Li, Q. X.; Li, J. G. Acta Phys. -Chim. Sin. 2010, 26, 2135. [徐群杰, 周小金, 李巧霞, 李金光. 物理化学学报, 2010, 26, 2135.]

    4. [4]

      (4) Beden, B.; Lamy, C.; Bewick, A.; Kunimatsu, K. J. Electroanal. Chem. 1981, 121, 343.

    5. [5]

      (5) Hamnett, A. Catal. Today 1997, 38, 445.  

    6. [6]

      (6) Li, L. L.;Wei, Z. D.; Yan, C.; Luo, Y. H.; Yin, G. Z.; Sun, C. X. Acta Phys. -Chim. Sin. 2007, 23 (5), 723. [李兰兰, 魏子栋, 严灿, 罗义辉, 尹光志, 孙才新. 物理化学学报, 2007, 23 (5), 723.]

    7. [7]

      (7) An, X. S.; Chen, D. J.; Zhou, Z. Y.;Wang, Q.; Fan, Y. J.; Sun, S. G. Acta Phys. -Chim. Sin. 2010, 26, 1207. [安筱莎, 陈德俊, 周志有, 汪强, 樊友军, 孙世刚. 物理化学学报. 2010, 26, 1207.]

    8. [8]

      (8) Wei, Z. D.; Guo, H. T.; Tang, Z. Y. J. Power Sources 1996, 58, 239.  

    9. [9]

      (9) Chrzanowski,W.; Kim, H.;Wieckowski, A. Catal. Lett. 1998, 50, 69.  

    10. [10]

      (10) Wei, Z. D.; Li, L. L.; Luo, Y. H.; Yan, C.; Sun, C. X.; Yin, G. Z.; Shen, P. K. J. Phys. Chem. B 2006, 110, 26055.  

    11. [11]

      (11) Chrzanowski,W.;Wieckowski, A. Langmuir 1997, 13, 5974.  

    12. [12]

      (12) Zhou,W. J.; Zhou, Z. H.; Li,W. Z.; Sun, G. Q.; Xin, Q. Chemistry 2003, 66 (4), 228. [周卫江, 周振华, 李文震, 孙公权, 辛勤. 化学通报. 2003, 66 (4), 228.]  

    13. [13]

      (13) odenough, J. B.; Manoharan, R.; Shukla, A. K.; Ramesh, K. V. Chem. Mater. 1989, 1, 391.  

    14. [14]

      (14) Wei, Z. D.; Miki, A.; Ohmori, T.; Osawa, M. Acta Phys. -Chim. Sin. 2002, 18 (12), 1120. [魏子栋, 三木敦史, 大森唯义, 大泽雅致. 物理化学学报, 2002, 18 (12), 1120.]

    15. [15]

      (15) She, C. X.; Li, X. Q.; Ren, B.; Lin, H. S.; Tian, Z. Q. Chinese Journal of Light Scattering 2002, 3, 223. [佘春兴, 李筏琴, 任斌, 林华水, 田中群. 光散射学报, 1999, 3, 223]

    16. [16]

      (16) Frelink, T.; Visschefz,W.; Van Veen, J. A. R. Electrochim. Acta 1994, 39, 1871.  

    17. [17]

      (17) Antolini, E.; nzalez, E. R. E. Catal. Today 2011, 160, 28.  

    18. [18]

      (18) OliveiraNeto, A.; Ricardo, R. D.; Marcelo,M. T., Linardia, M.; Spinacé, E. V. J. Power Sources 2007, 166, 87.  

    19. [19]

      (19) Strasser, P. J. Comb. Chem. 2008, 10, 216.  

    20. [20]

      (20) Estevam, V. Spinacé; Marcelo, L.; Almir, O. N. Electrochem. Commun. 2005, 7, 365.  

    21. [21]

      (21) Travitsky, N.; Burstein, L.; Rosenberg, Y.; Peled, E. J. Power Sources 2009, 194, 161.  

    22. [22]

      (22) Beyhan, S.; Kadirgan, F.; Léger, J. M. In-situ Iinfrared Spectroscopy Study of Ethanol Oxidation on Pt and PtSn-Based Trimetallic Anode Electrocatalysts for Direct Ethanol Fuel Cell. In Electrode Processes Relevant to Fuel Cell Technology. 217th ECS Meeting, Vancouver, Canada, April 25-30, 2010; Birss, V.; Kulesza, P.; Mustain,W.; Ota, K.;Wilkinson, D.; The Electrochemical Society 2010, B7, 603.

    23. [23]

      (23) Wei, Z. D.; Chen, S. G.; Liu, Y.; Sun, C. X.; Shao, Z. G.; Shen, P. K. J. Phys. Chem. C 2007, 111, 15456.  

    24. [24]

      (24) Liao, M. J.;Wei, Z. D.; Chen, S. G.; Li, L.; Ji, M. B.;Wang, Y. Q. Int. J. Hydrog. Energy 2010, 35, 8071.  

    25. [25]

      (25) Crabb, E. M.; Marshall, R.; Thompsett, D. J. Electrochem. Soc. 2000, 147, 4440.  

    26. [26]

      (26) Xia, X. H.; Iwasita, T.; Ge, F.; Vielstich,W. Electrochim . Acta 1996, 41, 711.  

    27. [27]

      (27) Iwasita, T.; Braz. J . Chem . Soc. 2002, 13, 401.

    28. [28]

      (28) Wang, J.; Masel, R. I. Surf . Sci. 1991, 235, 199.

    29. [29]

      (29) Zhou, Z. Y.; Tian, N.; Zeng D. M.; Sun, S. G. The Proceeding of 12th National Conference of Electrochemistry, Shanghai, China, 2003, A040. [周志有, 田娜, 曾冬梅, 孙世刚, 第12 次全国电化学会议论文集, 上海, 2003, A040.]

    30. [30]

      (30) Chen,W.; Kim, J.; Sue, S.; Chen, S. Langmuir 2007, 23, 11303.  

    31. [31]

      (31) Chen, J.;Wang, M.; Liu, B.; Fan, Z.; Cui, K.; Kuang, Y. J. Phys. Chem. B 2006, 110, 1775.  

    32. [32]

      (32) Hsieh, C. T.; Lin, J. Y. J. Power Sources 2009, 188, 347.  

  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    3. [3]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    11. [11]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    12. [12]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    13. [13]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    14. [14]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    15. [15]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    16. [16]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    17. [17]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    18. [18]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    19. [19]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(957)
  • Abstract views(3022)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return