Citation: GUO Pei-Zhi, JI Qian-Qian, ZHANG Li-Li, ZHAO Shan-Yu, ZHAO Xiu-Song. Preparation and Characterization of Peanut Shell-Based Microporous Carbons as Electrode Materials for Supercapacitors[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2836-2840. doi: 10.3866/PKU.WHXB20112836 shu

Preparation and Characterization of Peanut Shell-Based Microporous Carbons as Electrode Materials for Supercapacitors

  • Received Date: 18 July 2011
    Available Online: 13 October 2011

    Fund Project: 国家自然科学基金(20803037, 21143006) (20803037, 21143006) 青岛市应用基础研究项目(11-2-4-2-(8)-jch) (11-2-4-2-(8)-jch)

  • Microporous carbons (PSC-1 and PSC-2) were obtained directly by the carbonization of peanut shells without and with NaOH solution pretreatment, respectively. Both samples have a main pore size of ~0.8 nm. The surface area increases from 552 m2·g-1 for PSC-1 to 726 m2·g-1 for PSC-2. Cyclic voltammograms (CVs) of the PSC-1 and PSC-2 electrodes and the symmetrical supercapacitors show almost rectangular shape indicating excellent capacitance features. The specific capacitances of PSC-1 and PSC-2 can reach 233 and 378 F·g-1, respectively, at a current density of 0.1 A·g-1 in a three-electrode system using porous carbon as the working electrode, a platinum electrode as the counter electrode and a Ag/AgCl electrode as the reference electrode. Furthermore, the electrodes in both three-electrode systems and supercapacitors show high stability and capacitance retainability after 1000 cycles. The formation mechanisms for the two microporous carbons and the relationship between the carbon materials and their electrochemical properties are discussed based on the experimental results.
  • 加载中
    1. [1]

      (1) Chmiola, J.; Yushin, G.; tsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Science 2006, 313, 1760.  

    2. [2]

      (2) Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245.  

    3. [3]

      (3) Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum Publisher: New York, 1999.

    4. [4]

      (4) Burke, A. J. Power Sources 2000, 91, 37.  

    5. [5]

      (5) Kötz, R.; Carlen, M. Electrochim. Acta 2000, 45, 2483.  

    6. [6]

      (6) Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38, 2520.  

    7. [7]

      (7) Alvarez, S.; Blanco-Lopez, C.; Miranda-Ordieres, A. J.; Fuertes, A. B.; Centeno, T. A. Carbon 2005, 43, 866-870.

    8. [8]

      (8) Li,W.; Zhou, J.; Xing,W.; Zhuo, S. P.; Lü, Y. M. Acta Phys. -Chim. Sin. 2011, 27, 620. [李文, 周晋, 邢伟, 禚淑萍, 吕忆民. 物理化学学报, 2011, 27, 620.]

    9. [9]

      (9) Wang, D.W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. Angew. Chem. Int. Ed. 2008, 47, 373.  

    10. [10]

      (10) Raymundo-Piñero, E.; Leroux, F.; Béguin, F. Adv. Mater. 2006, 18, 1877.  

    11. [11]

      (11) Ji, Q. Q.; Guo, P. Z.; Zhao, X. S. Acta Phys. –Chim. Sin. 2010, 26, 1254. [季倩倩, 郭培志, 赵修松. 物理化学学报, 2010, 26, 1254.]

    12. [12]

      (12) Zhang, C. X.; Long, D. H.; Xing, B. L.; Qiao,W. M.; Zhang, R.; Zhan, L.; Liang, X. Y.; Ling, L. C. Electrochem. Commun. 2008, 10, 1809.  

    13. [13]

      (13) Vilaplana-Orte , E.; Lillo-Ródenas, M. A.; Alcañiz-Monge, J.; Cazorla-Amorós, D.; Linares-Solano, A. Carbon 2009, 47, 2141.  

    14. [14]

      (14) Wilson, K.; Yang, H.; Seo C.W.; MarshallW. E. Bioresour. Technol. 2006, 97, 2266.  

    15. [15]

      (15) Watanabe, I.; Doi, T.; Yamaki, J.; Lin, Y. Y.; Fey, G. T. K. J. Power Sources 2008, 176, 347.  

    16. [16]

      (16) Girgis, B. S.; Yunis, S. S.; Soliman, A. F. Mater. Lett. 2002, 57, 164.  

    17. [17]

      (17) Li, Y. H.; Du, Q. J.;Wang, X. D.; Zhang, P.;Wang, D. C.;Wang, Z. H.; Xia, Y. Z. J. J. Hazard. Mater. 2010, 183, 583.  

    18. [18]

      (18) Yang, J.; Qiu, K. Q. Chem. Eng. J. 2010, 165, 209.  

    19. [19]

      (19) Garg, U. K.; Kaur, M. P.; Garg, V. K.; Sud, D. J. Hazard. Mater. 2007, 140, 60.  

    20. [20]

      (20) Singh, K. P.; Mohan, D.; Sinha, S.; Tondon, G. S.; sh, D. Ind. Eng. Chem. Res. 2003, 42, 1965.  

    21. [21]

      (21) Kara z, S.; Tay, T.; Ucar, S.; Erdem, M. Bioresour. Technol. 2008, 99, 6214.  

    22. [22]

      (22) Wang, L. L.; Han, G. T.; Zhang, Y. M. Carbohyd. Polym. 2007, 69, 391.  

    23. [23]

      (23) Janes, A.; Permann, L.; Arulepp, M.; Lust, E. Electrochem. Commun. 2004, 6, 313.  

    24. [24]

      (24) Wang, D.W.; Li, F.; Zhao, J. P.; Ren,W. C.; Chen, Z. G.; Tan, J.;Wu, Z. S.; Gentle, I.; Lu, G. Q.; Cheng, H. M. ACS Nano 2009, 3, 1745.  

    25. [25]

      (25) Peng, C.; Jin, J.; Chen, G. Z. Electrochim. Acta 2007, 53, 525.  

    26. [26]

      (26) Zheng, J. P. J. Electrochem. Soc. 2003, 150, A484.

    27. [27]

      (27) Eliad, L.; Salitra, G.; Soffer, A.; Aurbach, D. J. Phys. Chem. B 2002, 106, 10128.  

    28. [28]

      (28) Yang, X. H.;Wang, Y. G.; Xiong, H. M.; Xia, Y. Y. Electrochim. Acta 2007, 53, 752.  

    29. [29]

      (29) Stoller, M. D.; Ruoff, R. S. Energy Environ. Sci. 2010, 3, 1294.  

    30. [30]

      (30) Khomenko, V.; Frackowiak, E.; Béguin, F. Electrochim. Acta 2005, 50, 2499.  

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    4. [4]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    9. [9]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    10. [10]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    11. [11]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    14. [14]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    15. [15]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    16. [16]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    17. [17]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    18. [18]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

Metrics
  • PDF Downloads(1323)
  • Abstract views(3179)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return