Citation: GUO Pei-Zhi, JI Qian-Qian, ZHANG Li-Li, ZHAO Shan-Yu, ZHAO Xiu-Song. Preparation and Characterization of Peanut Shell-Based Microporous Carbons as Electrode Materials for Supercapacitors[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2836-2840. doi: 10.3866/PKU.WHXB20112836
-
Microporous carbons (PSC-1 and PSC-2) were obtained directly by the carbonization of peanut shells without and with NaOH solution pretreatment, respectively. Both samples have a main pore size of ~0.8 nm. The surface area increases from 552 m2·g-1 for PSC-1 to 726 m2·g-1 for PSC-2. Cyclic voltammograms (CVs) of the PSC-1 and PSC-2 electrodes and the symmetrical supercapacitors show almost rectangular shape indicating excellent capacitance features. The specific capacitances of PSC-1 and PSC-2 can reach 233 and 378 F·g-1, respectively, at a current density of 0.1 A·g-1 in a three-electrode system using porous carbon as the working electrode, a platinum electrode as the counter electrode and a Ag/AgCl electrode as the reference electrode. Furthermore, the electrodes in both three-electrode systems and supercapacitors show high stability and capacitance retainability after 1000 cycles. The formation mechanisms for the two microporous carbons and the relationship between the carbon materials and their electrochemical properties are discussed based on the experimental results.
-
Keywords:
-
Supercapacitor
, - Electrode,
- Microporous carbon,
- Peanut shell,
- Capacitance
-
-
-
[1]
(1) Chmiola, J.; Yushin, G.; tsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Science 2006, 313, 1760.
- [2]
-
[3]
(3) Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum Publisher: New York, 1999.
-
[4]
(4) Burke, A. J. Power Sources 2000, 91, 37.
-
[5]
(5) Kötz, R.; Carlen, M. Electrochim. Acta 2000, 45, 2483.
-
[6]
(6) Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38, 2520.
-
[7]
(7) Alvarez, S.; Blanco-Lopez, C.; Miranda-Ordieres, A. J.; Fuertes, A. B.; Centeno, T. A. Carbon 2005, 43, 866-870.
-
[8]
(8) Li,W.; Zhou, J.; Xing,W.; Zhuo, S. P.; Lü, Y. M. Acta Phys. -Chim. Sin. 2011, 27, 620. [李文, 周晋, 邢伟, 禚淑萍, 吕忆民. 物理化学学报, 2011, 27, 620.]
-
[9]
(9) Wang, D.W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. Angew. Chem. Int. Ed. 2008, 47, 373.
-
[10]
(10) Raymundo-Piñero, E.; Leroux, F.; Béguin, F. Adv. Mater. 2006, 18, 1877.
-
[11]
(11) Ji, Q. Q.; Guo, P. Z.; Zhao, X. S. Acta Phys. –Chim. Sin. 2010, 26, 1254. [季倩倩, 郭培志, 赵修松. 物理化学学报, 2010, 26, 1254.]
-
[12]
(12) Zhang, C. X.; Long, D. H.; Xing, B. L.; Qiao,W. M.; Zhang, R.; Zhan, L.; Liang, X. Y.; Ling, L. C. Electrochem. Commun. 2008, 10, 1809.
-
[13]
(13) Vilaplana-Orte , E.; Lillo-Ródenas, M. A.; Alcañiz-Monge, J.; Cazorla-Amorós, D.; Linares-Solano, A. Carbon 2009, 47, 2141.
-
[14]
(14) Wilson, K.; Yang, H.; Seo C.W.; MarshallW. E. Bioresour. Technol. 2006, 97, 2266.
-
[15]
(15) Watanabe, I.; Doi, T.; Yamaki, J.; Lin, Y. Y.; Fey, G. T. K. J. Power Sources 2008, 176, 347.
-
[16]
(16) Girgis, B. S.; Yunis, S. S.; Soliman, A. F. Mater. Lett. 2002, 57, 164.
-
[17]
(17) Li, Y. H.; Du, Q. J.;Wang, X. D.; Zhang, P.;Wang, D. C.;Wang, Z. H.; Xia, Y. Z. J. J. Hazard. Mater. 2010, 183, 583.
- [18]
-
[19]
(19) Garg, U. K.; Kaur, M. P.; Garg, V. K.; Sud, D. J. Hazard. Mater. 2007, 140, 60.
-
[20]
(20) Singh, K. P.; Mohan, D.; Sinha, S.; Tondon, G. S.; sh, D. Ind. Eng. Chem. Res. 2003, 42, 1965.
-
[21]
(21) Kara z, S.; Tay, T.; Ucar, S.; Erdem, M. Bioresour. Technol. 2008, 99, 6214.
-
[22]
(22) Wang, L. L.; Han, G. T.; Zhang, Y. M. Carbohyd. Polym. 2007, 69, 391.
-
[23]
(23) Janes, A.; Permann, L.; Arulepp, M.; Lust, E. Electrochem. Commun. 2004, 6, 313.
-
[24]
(24) Wang, D.W.; Li, F.; Zhao, J. P.; Ren,W. C.; Chen, Z. G.; Tan, J.;Wu, Z. S.; Gentle, I.; Lu, G. Q.; Cheng, H. M. ACS Nano 2009, 3, 1745.
-
[25]
(25) Peng, C.; Jin, J.; Chen, G. Z. Electrochim. Acta 2007, 53, 525.
-
[26]
(26) Zheng, J. P. J. Electrochem. Soc. 2003, 150, A484.
-
[27]
(27) Eliad, L.; Salitra, G.; Soffer, A.; Aurbach, D. J. Phys. Chem. B 2002, 106, 10128.
-
[28]
(28) Yang, X. H.;Wang, Y. G.; Xiong, H. M.; Xia, Y. Y. Electrochim. Acta 2007, 53, 752.
-
[29]
(29) Stoller, M. D.; Ruoff, R. S. Energy Environ. Sci. 2010, 3, 1294.
-
[30]
(30) Khomenko, V.; Frackowiak, E.; Béguin, F. Electrochim. Acta 2005, 50, 2499.
-
[1]
-
-
[1]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[2]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[3]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[4]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[5]
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
-
[6]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[7]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[8]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[9]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[10]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[11]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[12]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[13]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[14]
Ziheng Zhuang , Xiao Xu , Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040
-
[15]
Hongyun Liu , Jiarun Li , Xinyi Li , Zhe Liu , Jiaxuan Li , Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070
-
[16]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[17]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[18]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[19]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[20]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[1]
Metrics
- PDF Downloads(1323)
- Abstract views(3138)
- HTML views(28)