Citation: YUE Zhao, ZHANG Wei, WANG Cheng, LIU Guo-Hua, NIU Wen-Cheng. Photoinduced Electron Transfer between CdS Quantum Dots and ld Electrodes[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2814-2820. doi: 10.3866/PKU.WHXB20112814 shu

Photoinduced Electron Transfer between CdS Quantum Dots and ld Electrodes

  • Received Date: 12 August 2011
    Available Online: 20 October 2011

    Fund Project: 国家自然科学基金(61001056, 60871028) (61001056, 60871028)天津市自然科学基金(10JCZDJC15300)资助项目 (10JCZDJC15300)

  • For a better design of quantum dots (QDs) based photoelectrochemical sensors, photoinduced electron transfer between CdS QDs and ld electrodes was studied. First, a theoretical study and mathematical model are given wherein several electron tunneling processes compete with each other to give a photocurrent under illumination. Second, simulations with different parameters were carried out. Finally, photocurrents from CdS QDs modified ld electrodes with dithiol groups were measured under different conditions. The results show that the amplitudes and directions of the photocurrents are affected by the applied potential, the light intensity, and the concentrations of oxidants and reducers. The experimental results were then compared with the simulation results and analyzed based on the model given. By comparing the simulation and experimental results the theoretical study and the mathematical model are shown to be accurate.
  • 加载中
    1. [1]

      (1) Gill, R.; Zayats, M.;Willner, I. Angew. Chem. Int. Edit. 2008, 47, 7602.  

    2. [2]

      (2) Lin, C. A.; Liedl, T.; Sperling, R. A.; Fernández-Argüelles, M. T.; Costa-Fernández, J. M.; Pereiro, R.; Sanz- Medel, A.; Chang,W. H.; Parak,W. J. J. Mater. Chem. 2007, 17, 1343.  

    3. [3]

      (3) Bakkers, E. P. A. M.; Reitsma, E.; Kelly, J. J.; Vanmaekelbergh, D. J. Phys. Chem. B 1999, 103, 2781.  

    4. [4]

      (4) Bakkers, E. P. A. M.; Roest, A. L.; Marsman, A.W.; Jenneskens, L. W.; Steensel, L. I.; Kelly, J. J.; Vanmaekelbergh, D. J. Phys. Chem. B 2000, 104, 7266.  

    5. [5]

      (5) Ogawa, S.; Hu, K.; Fan, F. R.; Bard, A. J. J. Phys. Chem. B 1997, 101, 5707.

    6. [6]

      (6) Yildiz, H. B.; Tel-Vered, R.;Willner, I. Angew. Chem. Int. Edit. 2008, 47, 6629.  

    7. [7]

      (7) Stoll, C.; Kudera, S.; Parak,W. J.; Lisdat, F. Small 2006, 2, 741.  

    8. [8]

      (8) Schubert, K.; Khalid,W.; Yue, Z.; Parak,W. J.; Lisdat, F. Langmuir 2010, 26, 1395.  

    9. [9]

      (9) Katz, E.; Zayats, M.;Willner, I.; Lisdat, F. Chem. Commum. 2006, 1395.

    10. [10]

      (10) Stoll, C.; Gehring, C.; Schubert, K.; Zanella, M.; Parak,W. J.; Lisdat, F. Biosens. Bioelectron. 2008, 24, 260.  

    11. [11]

      (11) Wang, G. L.; Xu, J. J.; Chen, H. Y. Sci. China Ser. B 2009, 39, 1336. [王光丽, 徐静娟, 陈洪渊. 中国科学B辑: 化学, 2009, 39, 1336.]

    12. [12]

      (12) Qian, Z.; Bai, H. J.;Wang, G. L.; Xu, J. J.; Chen, H. Y. Biosens. Bioelectron. 2010, 25, 2045.  

    13. [13]

      (13) Bakkers, E. P. A. M.; Kelly, J. J.; Vanmaekelbergh. D. J. Electroanal. Chem. 2000, 482, 48.  

    14. [14]

      (14) Hickey, S. G.; Riley, D. J. J. Phys. Chem. B 1999, 103, 4599.  

    15. [15]

      (15) Su, B.; Fermin, D.; Abid, J.; Eugster, N.; Girault, H. J. Electroanal. Chem. 2005, 583, 241.  

    16. [16]

      (16) Xiao, Y.; Patolsky, F.; Katz, E.; Hainfeld, J. F.;Willner, I. Science 2003, 299, 1877.  

    17. [17]

      (17) Polymeropoulos, E. E. J. Appl. Phys. 1977, 48, 2404.  

    18. [18]

      (18) Kudera, S.; Carbone, L.; Casula, M. F.; Cin lani, R.; Falqui, A.; Snoeck, E.; Parak,W. J.; Manna, L. Nano. Lett. 2005, 5, 445.  

    19. [19]

      (19) Yue, Z.;Waqsh, K.; Zanella, M.; Abbasi, A.; Pfreundt, A.; Gil, P.; Schubert, K.; Lisdat, F.; Parak,W. J. Anal. Bioanal.Chem. 2010, 396, 1095.  

    20. [20]

      (20) Hojeij, M.; Su, B.; Tan, S.; Mériguet, G.; Girault, H. H. ACS Nano 2008, 2, 984.  

  • 加载中
    1. [1]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    2. [2]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    3. [3]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    6. [6]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    7. [7]

      Wenxu Liu Feng Han Boxuan Wang Huayi Liu Xiaobin Gu Xin Zhang Yao Liu . Comprehensive Chemical Experiment: Design, Synthesis, and Photoelectronic Properties Study of Fully Non-Fused Ring Electron Acceptors. University Chemistry, 2025, 40(10): 263-275. doi: 10.12461/PKU.DXHX202412021

    8. [8]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    9. [9]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    12. [12]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    13. [13]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    14. [14]

      Wencheng FangDong LiuYing ZhangHao FengQiang Li . Improved Photoelectrochemical Performance by Polyoxometalate-Modified CuBi2O4/Mg-CuBi2O4 Homojunction Photocathode. Acta Physico-Chimica Sinica, 2024, 40(2): 2304006-0. doi: 10.3866/PKU.WHXB202304006

    15. [15]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Xiangchun Li Wei Xue Xu Liu Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018

    19. [19]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    20. [20]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

Metrics
  • PDF Downloads(981)
  • Abstract views(3014)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return