Citation: YUE Zhao, ZHANG Wei, WANG Cheng, LIU Guo-Hua, NIU Wen-Cheng. Photoinduced Electron Transfer between CdS Quantum Dots and ld Electrodes[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2814-2820. doi: 10.3866/PKU.WHXB20112814 shu

Photoinduced Electron Transfer between CdS Quantum Dots and ld Electrodes

  • Received Date: 12 August 2011
    Available Online: 20 October 2011

    Fund Project: 国家自然科学基金(61001056, 60871028) (61001056, 60871028)天津市自然科学基金(10JCZDJC15300)资助项目 (10JCZDJC15300)

  • For a better design of quantum dots (QDs) based photoelectrochemical sensors, photoinduced electron transfer between CdS QDs and ld electrodes was studied. First, a theoretical study and mathematical model are given wherein several electron tunneling processes compete with each other to give a photocurrent under illumination. Second, simulations with different parameters were carried out. Finally, photocurrents from CdS QDs modified ld electrodes with dithiol groups were measured under different conditions. The results show that the amplitudes and directions of the photocurrents are affected by the applied potential, the light intensity, and the concentrations of oxidants and reducers. The experimental results were then compared with the simulation results and analyzed based on the model given. By comparing the simulation and experimental results the theoretical study and the mathematical model are shown to be accurate.
  • 加载中
    1. [1]

      (1) Gill, R.; Zayats, M.;Willner, I. Angew. Chem. Int. Edit. 2008, 47, 7602.  

    2. [2]

      (2) Lin, C. A.; Liedl, T.; Sperling, R. A.; Fernández-Argüelles, M. T.; Costa-Fernández, J. M.; Pereiro, R.; Sanz- Medel, A.; Chang,W. H.; Parak,W. J. J. Mater. Chem. 2007, 17, 1343.  

    3. [3]

      (3) Bakkers, E. P. A. M.; Reitsma, E.; Kelly, J. J.; Vanmaekelbergh, D. J. Phys. Chem. B 1999, 103, 2781.  

    4. [4]

      (4) Bakkers, E. P. A. M.; Roest, A. L.; Marsman, A.W.; Jenneskens, L. W.; Steensel, L. I.; Kelly, J. J.; Vanmaekelbergh, D. J. Phys. Chem. B 2000, 104, 7266.  

    5. [5]

      (5) Ogawa, S.; Hu, K.; Fan, F. R.; Bard, A. J. J. Phys. Chem. B 1997, 101, 5707.

    6. [6]

      (6) Yildiz, H. B.; Tel-Vered, R.;Willner, I. Angew. Chem. Int. Edit. 2008, 47, 6629.  

    7. [7]

      (7) Stoll, C.; Kudera, S.; Parak,W. J.; Lisdat, F. Small 2006, 2, 741.  

    8. [8]

      (8) Schubert, K.; Khalid,W.; Yue, Z.; Parak,W. J.; Lisdat, F. Langmuir 2010, 26, 1395.  

    9. [9]

      (9) Katz, E.; Zayats, M.;Willner, I.; Lisdat, F. Chem. Commum. 2006, 1395.

    10. [10]

      (10) Stoll, C.; Gehring, C.; Schubert, K.; Zanella, M.; Parak,W. J.; Lisdat, F. Biosens. Bioelectron. 2008, 24, 260.  

    11. [11]

      (11) Wang, G. L.; Xu, J. J.; Chen, H. Y. Sci. China Ser. B 2009, 39, 1336. [王光丽, 徐静娟, 陈洪渊. 中国科学B辑: 化学, 2009, 39, 1336.]

    12. [12]

      (12) Qian, Z.; Bai, H. J.;Wang, G. L.; Xu, J. J.; Chen, H. Y. Biosens. Bioelectron. 2010, 25, 2045.  

    13. [13]

      (13) Bakkers, E. P. A. M.; Kelly, J. J.; Vanmaekelbergh. D. J. Electroanal. Chem. 2000, 482, 48.  

    14. [14]

      (14) Hickey, S. G.; Riley, D. J. J. Phys. Chem. B 1999, 103, 4599.  

    15. [15]

      (15) Su, B.; Fermin, D.; Abid, J.; Eugster, N.; Girault, H. J. Electroanal. Chem. 2005, 583, 241.  

    16. [16]

      (16) Xiao, Y.; Patolsky, F.; Katz, E.; Hainfeld, J. F.;Willner, I. Science 2003, 299, 1877.  

    17. [17]

      (17) Polymeropoulos, E. E. J. Appl. Phys. 1977, 48, 2404.  

    18. [18]

      (18) Kudera, S.; Carbone, L.; Casula, M. F.; Cin lani, R.; Falqui, A.; Snoeck, E.; Parak,W. J.; Manna, L. Nano. Lett. 2005, 5, 445.  

    19. [19]

      (19) Yue, Z.;Waqsh, K.; Zanella, M.; Abbasi, A.; Pfreundt, A.; Gil, P.; Schubert, K.; Lisdat, F.; Parak,W. J. Anal. Bioanal.Chem. 2010, 396, 1095.  

    20. [20]

      (20) Hojeij, M.; Su, B.; Tan, S.; Mériguet, G.; Girault, H. H. ACS Nano 2008, 2, 984.  

  • 加载中
    1. [1]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    2. [2]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Xiangchun Li Wei Xue Xu Liu Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018

    7. [7]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    8. [8]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    9. [9]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    10. [10]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    11. [11]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    12. [12]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    13. [13]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    14. [14]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    15. [15]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    16. [16]

      Hongyan Feng Weiwei Li . Reflections on the Safety of Chemical Science Popularization Activities. University Chemistry, 2024, 39(9): 379-384. doi: 10.12461/PKU.DXHX202404087

    17. [17]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    18. [18]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    19. [19]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    20. [20]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

Metrics
  • PDF Downloads(981)
  • Abstract views(2727)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return