Citation: ZHANG Feng, WANG Hong-Yan, LIN Yue-Xia. Effects of Cu2+ on Proton Transfer Processes in an Adenine-Thymine Anion Base Pair[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2799-2804. doi: 10.3866/PKU.WHXB20112799 shu

Effects of Cu2+ on Proton Transfer Processes in an Adenine-Thymine Anion Base Pair

  • Corresponding author: LIN Yue-Xia, 
  • Received Date: 28 June 2011
    Available Online: 27 September 2011

    Fund Project: 国家自然科学基金(10974161, 11004160) (10974161, 11004160)中央高校基本科研业务费专项基金(SWJTU09CX079, 2010ZT06)资助项目 (SWJTU09CX079, 2010ZT06)

  • The proton-transfer processes of the adenine-thymine (A-T) base pair anion (AT)- and the Cu2+ cationized (A-T) base pair anion were investigated using the B3LYP/DZP ++ method. A single protontransfer process was found for the (A-T) base pair anion in which proton H26 at the N25 site of thymine transferred to the N10 site of adenine. The metal cation Cu2+ can coordinate to the N4 and N13 sites of adenine as well as the O24 and O28 sites of thymine in (AT)- by coordination interactions. For Cu2+ coordinated to the O24 and O28 sites of thymine the single proton transfer from thymine to adenine is possible. However, when Cu2+ interacts with the N4 or N13 of adenine the double proton-transferred product was found to be stable.
  • 加载中
    1. [1]

      (1) Thompson, C. K.; Conwell, E. J. Phys. Chem. Lett. 2010, 1, 1403.  

    2. [2]

      (2) Noguera, M.; Sodupe, M.; Bertrán, J. Theor. Chem. Acc. 2007, 118, 113.  

    3. [3]

      (3) Wang, H. Y.; Zhang, J. D.; Schaefer, H. F. ChemPhysChem. 2010, 11, 622.

    4. [4]

      (4) Xie, H. J.; Xia, F.; Cao, Z. X. J. Phys. Chem. A 2007, 111 (20), 4384.

    5. [5]

      (5) Lind, M. C.; Richardson, N. A.; Wheeler, S. E.; Schaefer, H. F. J. Phys. Chem. B 2007, 111 (19), 5525.

    6. [6]

      (6) Xu, Z.; Li, N.; Cui, Y. P. J. Chem. Chin. Univ. 2009. 30 (3), 588. [徐仲, 李宁, 崔燕平. 高等学校化学学报. 2009, 3, 588.]

    7. [7]

      (7) Shimizua, N.; Kawano, S.; Tachikawa, M. J. Mole. Struc. 2005, 735-736, 243.

    8. [8]

      (8) Villani, G. Chem. Phys. 2005, 316, 1.  

    9. [9]

      (9) Zhang, Y. Theoretical Investigation of Metal Cations Interact with DNA Base Pair. Ph. D. Dissertation, Huazhong University of Science and Technology,Wuhan, 2004. [张愚. 金属离子与DNA碱基对相互作用的理论研究[D]. 武汉: 华中科技大学, 2004.]

    10. [10]

      (10) Burda, J. V.; Sponer, J.; Hobza, P. J. Phys. Chem.1996, 100 (17), 7250.

    11. [11]

      (11) Burda, J. V.; Sponer, J.; Leszczynski, J.; Hobza, P. J. Phys. Chem. 1997, 101 (46), 9670.

    12. [12]

      (12) Noguera, M.; Bertrán, J.; Sodupe, M. J. Phys. Chem. B 2008, 112 (15), 4817.

    13. [13]

      (13) Kumar, A.; Sevilla, M. D.; Sándor, S. J. Phys. Chem . B 2008, 112 (16), 5189.

    14. [14]

      (14) Zhang, J. D.; Chen, Z. F.; Schaefer, H. F. J. Phys. Chem. A 2008, 112 (27), 6217.

    15. [15]

      (15) Richardson, N. A.;Wesolowski, S. S.; Schaefer, H. F. J. Phys. Chem. B 2003, 107 (3), 848.

    16. [16]

      (16) Xie, Y. M.; Schaefer, H. F. J. Chem. Phys. 2007, 127, 155107.  

    17. [17]

      (17) Radisic, D.; Bowen, K. H.; Dabkowska, I.; Storoniak, P.; Rak, J.; Gutowski, M. J. Am. Chem. Soc. 2005, 127, 6443.  

    18. [18]

      (18) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al . Gaussian 03, Revision A. 01; Gaussian Inc.: Pittsburgh, PA, 2003.

    19. [19]

      (19) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.  

    20. [20]

      (20) Lee, C.; Yang,W. T.; Parr, R. G. Phys. Rev. 1988, 37, 785.  

    21. [21]

      (21) Kumar, A.; Sevilla, M. D. J. Phys. Chem. B 2009, 113 (33), 11359.

    22. [22]

      (22) Latajka, Z.; Bouteiller, Y. J. Chem. Phys. 1994, 101, 9793.  

    23. [23]

      (23) Lee, C.; Fitzgerald, G.; Planas, M.; Novoa, J. J. J. Phys. Chem. 1996, 100, 7398.  

    24. [24]

      (24) Huzinaga, S. J. Chem. Phys. 1965, 42, 1293.

    25. [25]

      (25) Dunning, T. H. J. Chem. Phys. 1970, 53, 2823.  

    26. [26]

      (26) Wachters, A. J. H. J. Chem. Phys. 1970, 52, 1033.  

    27. [27]

      (27) Hood, D. M.; Pitzer, R. M.; Schaefer, H. F. J. Chem. Phys. 1979, 71, 705.  

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    4. [4]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    8. [8]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    11. [11]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    12. [12]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    13. [13]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    16. [16]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    17. [17]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    18. [18]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    19. [19]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    20. [20]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

Metrics
  • PDF Downloads(788)
  • Abstract views(2907)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return