Citation: ZENG Yong-Ping, ZHU Xiao-Min, YANG Zheng-Hua. Car-Parrinello Molecular Dynamics Simulations of Microstructure Properties of Liquid Water, Methanol and Ethanol[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2779-2785. doi: 10.3866/PKU.WHXB20112779 shu

Car-Parrinello Molecular Dynamics Simulations of Microstructure Properties of Liquid Water, Methanol and Ethanol

  • Received Date: 2 August 2011
    Available Online: 6 September 2011

    Fund Project: 国家自然科学基金(20806064)资助项目 (20806064)

  • Car-Parrinello molecular dynamics (CPMD) calculations were performed on the solvent structure properties of water, methanol, and ethanol. The results show that the first O…O peaks of the radial distribution functions (RDFs) in the three systems are 0.278 nm for water, 0.276 nm for methanol, and 0.275 nm for ethanol. The first O…H peaks of the radial distribution functions (RDFs) in the three systems are at 0.178 nm for water, 0.176 nm for methanol, and 0.177 nm for ethanol. This indicates that the hydrophobic groupings (hydrogen, methyl, and ethyl) have little influence on the first peak position. However, the intensity of the RDFs increases from water to methanol and ethanol. The spatial distribution functions show that the oxygen and hydrogen atoms of other solvent molecules have characteristic orientations on the reference molecules in these systems. The results are in agreement with the first sharp peak of the radial distribution functions. We analyzed the hydrogen bonds using a statistical method. The results show that the average hydrogen bond numbers are 3.62 for water, 1.99 for methanol, and 1.87 for ethanol. Therefore, different hydrogen-bonded network structures are formed for liquid water, methanol, and ethanol via hydrogen bonds.
  • 加载中
    1. [1]

      (1) Susan, B. R.; Lawrence, R. P.; Gerhard, H.; Joel, D. K.; Richard, L. M.; Antonio, R. J. Am. Chem. Soc. 2000, 122, 966.  

    2. [2]

      (2) Ayala, R.; Martinez, J. M.; Pappalardo, R. R.; Muňoz-Paez, A.; Marcos, E. S. J. Phys. Chem. B 2008, 112, 5416.  

    3. [3]

      (3) Rudolph,W.W.; Fischer, D.; Irmer, G.; Pye, C. C. Dalton Trans. 2009, 33, 6513.

    4. [4]

      (4) Yu, X. C.; Lin, K.; Hu, N. Y.; Zhou, S. G.; Liu, S. L. Acta Phys. -Chim. Sin. 2010, 26, 2473. [余小春, 林珂, 胡乃银, 周晓国, 刘世林. 物理化学学报, 2010, 26, 2473.]

    5. [5]

      (5) Liu, Y.;Wang, F. F.; Yu, C. Y.; Liu, C.; ng, L. D.; Yang, Z. Z. Acta Phys. -Chim. Sin. 2011, 27, 379. [刘燕, 王芳芳, 于春阳, 刘翠, 宫利东, 杨忠志. 物理化学学报, 2011, 27, 379.]

    6. [6]

      (6) Savage, P. E. Chem. Rev. 1999, 99, 603.  

    7. [7]

      (7) Hass, K. C.; Schneider,W. F.; Curioni, A.; Andreoni,W. Science 1998, 282, 265.  

    8. [8]

      (8) Staehelin, J.; Hoigne, J. Environ. Sci. Technol. 1985, 79:1206.

    9. [9]

      (9) Danten, Y.; Tassaing. T.; Besnard, M. J. Phys. Chem. A 2006, 110, 8986.  

    10. [10]

      (10) Saiz, L.; Guardia, E.; Padro, J. A. J. Chem. Phys. 2000, 113, 2814.2  

    11. [11]

      (11) van Erp, T. S.; Meijer, E. J. J. Chem. Phys. 2003, 118, 8831.  

    12. [12]

      (12) Chen, R.; Zhao, T. S. Electrochem. Commun. 2007, 9, 718.  

    13. [13]

      (13) Neburchilov, V.; Martin, J.;Wang, H.; Zhang, J. J. Power Sources 2007, 169, 221.  

    14. [14]

      (14) Zhou,W. J.; Zhou, B.; Li,W. Z.; Zhou, Z. H.; Song, S. Q.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; ula, M.; Tsiakaras, P. J. Power Sources 2004, 126, 16.  

    15. [15]

      (15) Li,W.; Liang, C.; Zhou,W.; Qiu, J.; Zhou, Z.; Sun, G.; Xin, Q. J. Phys. Chem. B 2003, 107, 6292.  

    16. [16]

      (16) Zhou,W.; Zhou, Z.; Song, S.; Li,W.; Sun, G.; Tsiakaras, P.; Xin, Q. Appl. Cata. B: Environ. 2003, 46, 273.  

    17. [17]

      (17) Song, S.; Tsiakaras, P. Appl. Cata. B: Environ. 2006, 63, 187.  

    18. [18]

      (18) Megyes, T.; Radnai, T.; Grósz, T.; Pálinkás, G. J. Mol. Liq. 2002, 101, 3.  

    19. [19]

      (19) Herdman, G. J.; Salmon, P. S. J. Am. Chem. Soc. 1991, 113, 2930.  

    20. [20]

      (20) Guillot, B.; Marteau, P.; Obriot, J. J. Chem. Phys. 1990, 93, 6148.  

    21. [21]

      (21) Pye, C. C.; Rudolph,W.W. J. Phys. Chem. 1998, 102, 9933.

    22. [22]

      (22) Omta, A.W.; Kropman, M. F.;Woutersen, S.; Bakker, H. J. Science 2003, 301, 347.  

    23. [23]

      (23) Sprik, M.; Hutter, J.; Parrinello, M. J. Chem. Phys. 1996, 105, 1142.  

    24. [24]

      (24) Wernet, P.; Nordlund, D.; Bergmann, U.; Cavalleri, M.; Odelius, M.; Ogasawara, H.; Näslund, L. Å.; Hirsch, T. K.; Ojamäe, L.; Glatzel, P.; Pettersson, L. G. M.; Nilsson, A. Science 2004, 204, 995.

    25. [25]

      (25) Haughney, M.; Ferrario, M.; McDonald, R. J. Phys. Chem. 1987, 91, 4934.  

    26. [26]

      (26) Saiz, L.; Padró, J. A.; Guàrdia, E. J. Phys. Chem. 1997, 101, 78.

    27. [27]

      (27) Pagliai, M.; Cardini, G.; Righini, R.; Schettino, V. J. Chem. Phys. 2003, 119, 6655.  

    28. [28]

      (28) Handgraaf, J.W.; Erp, T. S.; Meijer, E. J. Chem. Phys. Lett. 2003, 367, 617.  

    29. [29]

      (29) Kim, K.; Jordan, K. D. J. Phys. Chem. 1994, 98, 10089.  

    30. [30]

      (30) Provencal, R. A.; Casaes, R. N.; Roth, K.; Paul, J. B.; Chapo, C. N.; Saykally, R. J. J. Phys. Chem. A 2000, 104, 1423.  

    31. [31]

      (31) Xu, X.; ddard,W. A., III. J. Phys. Chem. A 2004, 108, 2305.  

    32. [32]

      (32) Benedict,W. S.; Gailan, N.; Plyler, E. K. J. Chem. Phys. 1956, 24, 1139.  

    33. [33]

      (33) Boyd, S. L.; Boyd, R. J. J. Chem. Theory Comput. 2007, 3, 54.  

    34. [34]

      (34) Sasada, Y.; Takano, M.; Satoh, T. J. Mol. Spectrosc. 1971, 38, 33.  

    35. [35]

      (35) Culot, J. P. Symposium on Gas Phase Molecular Structure, 4th ed.; Austin: Texas, 1972; paper T8.  

    36. [36]

      (36) Han, G. Z.; Zhang, C.; Gao, J. G.; Qian, P. Acta Phys. -Chim. Sin. 2011, 27, 1361. [韩光占, 张超, 高吉刚, 钱萍. 物理化学学报2011, 27, 1361.]

    37. [37]

      (37) Coussan, S.; Bouteiller, Y.; Perchard, J. P.; Zheng,W. Q. J. Phys. Chem. A 1998, 102, 5789.  

    38. [38]

      (38) Narten, A. H.; Levy, H. A. J. Chem. Phys. 1971, 55, 2263.  

    39. [39]

      (39) Narten, A. H.; Nabenschuss, A. J. Chem. Phys. 1984, 80, 3387.  

    40. [40]

      (40) Svishchev, I. M.; Kusalik, P. G. J. Chem. Phys. 1994, 100, 5165.  

    41. [41]

      (41) Kuo,W.; Mundy, J.; McGrath, J.; Siepmann, J. I.; Van de Vondele, J.; Sprik, M.; Hutter, J.; Chen, B.; Klein, M. L.; Mohamed, F.; Krack, M.; Parrinello, M. J. Phys. Chem. B 2004, 108, 12990.  

    42. [42]

      (42) Padró, J. A.; Saiz, L.; Guàrdia, E. J. Mol. Struct. 1997, 416, 243.  

    43. [43]

      (43) Jorgensen,W. L. J. Phys. Chem. 1986, 90, 1276.  

    44. [44]

      (44) Boese, A. D.; Doltsinis, N. L.; Handy, N. C.; Sprik, M. J. Chem. Phys. 2000, 112, 1670.  

    45. [45]

      (45) Soper, A. K.; Bruni, F.; Ricci, M. A. J. Chem. Phys. 1997, 106, 247.  

  • 加载中
    1. [1]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    2. [2]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    7. [7]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    8. [8]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    9. [9]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    10. [10]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    11. [11]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    12. [12]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    13. [13]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    14. [14]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    15. [15]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    16. [16]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    17. [17]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    18. [18]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    19. [19]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    20. [20]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

Metrics
  • PDF Downloads(1347)
  • Abstract views(4366)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return