Citation: LIU Qing-Shan, YAN Pei-Fang, YANG Miao, TAN Zhi-Cheng, LI Chang-Ping, WELZ-BIERMANN Urs. Dynamic Viscosity and Conductivity of Ionic Liquids [Cnpy][NTf2] (n=2, 4, 5)[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2762-2766. doi: 10.3866/PKU.WHXB20112762 shu

Dynamic Viscosity and Conductivity of Ionic Liquids [Cnpy][NTf2] (n=2, 4, 5)

  • Received Date: 20 April 2011
    Available Online: 26 September 2011

    Fund Project: 国家自然科学基金(21073189, 21006007, 20901076, 21176033) (21073189, 21006007, 20901076, 21176033)中国科学院大连化学物理研究所创新基金(K2009D03)资助项目 (K2009D03)

  • Experimental dynamic viscosity and conductivity data of the air- and water-stable hydrophobic ionic liquids (ILs) N-alkylpyridinium bis(trifluoromethylsulfonyl)imide ([Cnpy][NTf2] n=2, 4, 5) were recorded at temperatures ranging from 298.15 to 338.15 K and from 283.15 to 338.15 K with an interval of 5 K. The dynamic viscosity and conductivity values of the [Cnpy][NTf2] (n=2, 4, 5) ILs were fitted using the Arrhenius equation and the Fulcher equation. The molar conductivity was calculated at temperatures ranging from 283.15 to 338.15 K from the conductivity and density data. The relationship between the dynamic viscosity and the molar conductivity was discussed in terms of Walden's rule.
  • 加载中
    1. [1]

      (1) Tsunashima, K.; Sugiya, M. Electrochem. Commun. 2007, 9, 2353.  

    2. [2]

      (2) Seki, S.; Kobayashi, Y.; Miyashiro, H.; Ohno, Y.; Usami, A.; Mita, Y.;Watanabe, M.; Terada, N. Chem. Commun. 2006, 544.

    3. [3]

      (3) Itoh, H.; Naka, K.; Chujo, Y. J. Am. Chem. Soc. 2004, 126, 3026.  

    4. [4]

      (4) Du, Z.; Yu, Y. L.;Wang, J. H. Chem. Eur. J. 2007, 13, 2130.  

    5. [5]

      (5) Endres, F.; Abedin, S. Z. E. Phys . Chem . Chem . Phys. 2006, 8, 2101.

    6. [6]

      (6) Fuller, J.; Carlin, R. T.; Long, H. C. D.; Haworth, D. J. Chem. Soc. Chem. Commun. 1994, 299.

    7. [7]

      (7) rdon, C. M.; Holbrey, J. D.; Kennedy, R.; Seddon, K. R. J. Mater. Chem. 1998, 8, 2627.  

    8. [8]

      (8) Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Inorg. Chem. 1996, 35, 1168.  

    9. [9]

      (9) Cammarata, L.; Kazarian, S. G.; Salter, P. A.;Welton, T. Phys. Chem. Chem. Phys. 2001, 3, 5192.

    10. [10]

      (10) Liu, Q. B.; Janssen, M. H. A.; Rantwijk, F. V.; Sheldon, R. A. Green Chem. 2005, 7, 39.  

    11. [11]

      (11) Zhou, Z. B.; Matsumoto, H.; Tatsumi, K. Chemistry Letters 2004, 33, 680.  

    12. [12]

      (12) Zhou, Z. B.; Matsumoto, H.; Tatsumi, K. Chemistry Letters 2004, 33, 886.  

    13. [13]

      (13) Zhou, Z. B.; Matsumoto, H.; Tatsumi, K. Chemistry Letters 2004, 33, 1636.  

    14. [14]

      (14) Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. J. Phys. Chem. B 2005, 109, 6103.  

    15. [15]

      (15) Jacquemin, J.; Husson, P.; Padua, A. A. H.; Majer, V. Green Chem. 2006, 8, 172.  

    16. [16]

      (16) Fang, S. H.; Yang, L.;Wei, C.; Peng, C. X.; Tachibana, K.; Kamijima, K. Electrochem. Commun. 2007, 9, 2696.  

    17. [17]

      (17) Kazock, J.; Tag ugui, M.; Anouti, M.;Willman, P.; Carré, B.; Lemordant, D. J. Appl. Electrochem. 2009, 39, 2461.  

    18. [18]

      (18) Sakaebe, H.; Matsumoto, H. Electrochem. Commun. 2003, 5, 594.  

    19. [19]

      (19) Yang, L.; Zhang, Z. X.; Gao, X. H.; Zhang, H. Q.; Mashita, K. J. Power Sources 2006, 162, 614.  

    20. [20]

      (20) Matsumoto, H.; Sakaebe, H.; Tatsumi, K.; Kikuta, M.; Ishiko, E.; Kono, M. J. Power Sources 2006, 160, 1308.  

    21. [21]

      (21) Orita, A.; Kamijima, K.; Yoshida, M. J. Power Sources 2010, 195, 7471.  

    22. [22]

      (22) Liu, Q. S.; Yang, M.; Yan, P. F.; Liu, X. M.; Tan, Z. C.;Welz- Biermann, U. J. Chem. Eng. Data 2010, 55, 4928.  

    23. [23]

      (23) Tokuda, H.; Tsuzuki, S.; Susan, M. A. B. H.; Hayamizu, K.; Watanabe, M. J. Phys. Chem. B 2006, 110, 19593.  

    24. [24]

      (24) Pan, Y.; Boyd, L. E.; Kruplak, J. F.; Cleland,W. E., Jr.;Wilkes, J. S.; Hussey, C. L. J. Electrochem. Soc. 2011, 158, F1.

    25. [25]

      (25) MacFarlane, D. R.; Meakin, P.; Sun, J.; Amini, N.; Forsyth, M. J. Phys. Chem. B 1999, 103, 4164.  

    26. [26]

      (26) Orita, A.; Kamijima, K.; Yoshida, M.; Yang, L. J. Power Sources 2010, 195, 6970.  

    27. [27]

      (27) Harris, K. R.;Woolf, L. A.; Kanakubo, M. J. Chem. Eng. Data 2005, 50, 1777.  

    28. [28]

      (28) Wu, T. Y.; Su, S. G.; Gung, S. T.; Lin, M.W.; Lin, Y. C.; Lai, C. A.; Sun, I.W. Electrochimica. Acta 2010, 55, 4475.  

    29. [29]

      (29) Carpio, R. A.; King, L. A.; Kibler, F. C., Jr.; Fannin, A. A., Jr. J. Electrochem. Soc. 1979, 126, 1650.  

    30. [30]

      (30) Hagiwara, R.; Matsumoto, K.; Nakamori, Y.; Tsuda, T.; Ito, Y.; Matsumoto, H.; Momota, K. J. Electrochem. Soc. 2003, 150, D195.

    31. [31]

      (31) Yoshizawa, M.; Xu,W.; Angell, C. A. J. Am. Chem. Soc. 2003, 125, 15411.  

    32. [32]

      (32) Angell, C. A.; Byrne, N.; Belieres, J. P. Accounts Chem. Res. 2007, 40, 1228.  

    33. [33]

      (33) Xu,W.; Cooper, E. I.; Angell, C. A. J. Phys. Chem. B 2003, 107, 6170.  

    34. [34]

      (34) MacFarlane, D. R.; Forsyth, M.; Iz rodina, E. I.; Abbott, A. P.; Annat, G.; Fraser, K. Phys. Chem. Chem. Phys. 2009, 11, 4962.

    35. [35]

      (35) Xu,W.;Wang, L. M.; Nieman, R. A.; Angell, C. A. J. Phys. Chem. B 2003, 107, 11749.  

    36. [36]

      (36) Fraser, K. J.; Iz rodina, E. I.; Forsyth, M.; Scott, J. L.; MacFarlane, D. R. Chem. Commun. 2007, 3817.

    37. [37]

      (37) Matsumoto, K.; Hagiwara, R. Inorg. Chem. 2009, 48, 7350.  

  • 加载中
    1. [1]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    2. [2]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    3. [3]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    4. [4]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    5. [5]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    6. [6]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    7. [7]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    8. [8]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    9. [9]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    10. [10]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    11. [11]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    12. [12]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    13. [13]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    14. [14]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    15. [15]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    16. [16]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    17. [17]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    20. [20]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

Metrics
  • PDF Downloads(1471)
  • Abstract views(3672)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return