Citation: HUA Xiao-Xiao, WANG Jing-Bo, WANG Quan-De, TAN Ning-Xin, LI Xiang-Yuan. Mechanism Construction and Simulation for the High-Temperature Combustion of n-Dodecane[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2755-2761. doi: 10.3866/PKU.WHXB20112755
-
Using automatic generation software for hydrocarbon oxidation mechanisms, a detailed mechanism for the high-temperature combustion of n-dodecane was developed. A semi-detailed mechanism consisting of 202 species and 738 reactions was obtained by rate-of-production analysis while a skeletal mechanism including 53 species and 228 reactions was obtained using path flux analysis. Both the semi-detailed mechanism and the skeletal mechanism were validated by comparing simulation results including the ignition delay time, high-temperature pyrolysis, and the laminar flame speed with experiments. The current mechanism generation method and the generated semi-detailed and skeletal mechanisms for n-dodecane should be useful in computational fluid dynamics simulations. Finally, the major reaction pathways of n-dodecane oxidation and the important reactions in the ignition process were investigated by reaction path analysis and sensitivity analysis, respectively.
-
-
[1]
(1) Dagaut, P.; Cathonnet, M. Prog. Energy Combust. Sci. 2006, 32, 48.
-
[2]
(2) You, X. Q.; E lfopoulos, F. N.;Wang, H. Proc. Combust. Inst. 2009, 32, 403.
-
[3]
(3) Simmie, J. M. Prog. Energy Combust. Sci. 2003, 29, 599.
-
[4]
(4) Westbrook, C. K.; Pitz,W. J.; Herbinet, O.; Curran, H. J.; Silke, E. J. Combust. Flame 2009, 156, 181.
-
[5]
(5) Sirjean, B.; Dames, E.; Sheen, D. A.; You, X. Q.; Sung, C.; Holley, A. T.; E lfopoulos, F. N.;Wang, H.; Vasu, S. S.; Davidson, D. F.; Hanson, R. K.; Bowman, C. T.; Kelley, A.; Law, C. K.; Tsang,W.; Cernansky, N. P.; Miller, D. L.; Violi, A.; Lindstedt, R. P. A High-Temperature Chemical Kinetic Model of n-alkane Oxidation, JetSurF, Version 0.2. http://melchior.usc. edu/JetSurF/Version0_2/Index.html (accessed September 08, 2008).
-
[6]
(6) Muharam, Y.;Warnatz, J. Phys. Chem. Chem. Phys. 2007, 9, 4218.
-
[7]
(7) Wang, Q. D.;Wang, J. B.; Li, J. Q.; Tan, N. X.; Li, X. Y. Combust. Flame 2011, 158, 217.
-
[8]
(8) Li, J.; Shao, J. X.; Liu, C. X.; Rao, H. B.; Li, Z. R.; Li, X. Y. Acta Chim. Sin. 2010, 68, 239. [李军, 邵菊香, 刘存喜, 饶含兵, 李泽荣, 李象远. 化学学报, 2010, 68, 239.]
-
[9]
(9) Tan, N. X.;Wang, J. B.; Hua, X. X.; Li, Z. R.; Li, X. Y. Chem. J. Chin. Univ. 2011, 32, 1832. [谈宁馨, 王静波, 华晓筱, 李泽荣, 李象远. 高等学校化学学报, 2011, 32, 1832.]
-
[10]
(10) Wang, H.; You, X. Q.; Joshi, A. V.; Davis, S. G.; Laskin, A.; E lfopoulos, F. N.; Law, C. K. USC Mech Version II. High-Temperature Combustion Reaction Model of H 2 /CO/C 1 -C 4 Compounds. http://ignis.usc.edu/USC_Mech_II.htm (accessed May 2007).
-
[11]
(11) Holley, A. T.; You, X. Q.; Dames, E.;Wang, H.; E lfopoulos, F. N. Proc. Combust. Inst. 2009, 32, 1157.
-
[12]
(12) Sun,W.; Chen, Z.; u, X.; Ju, Y. Combust. Flame 2010, 157, 1298.
-
[13]
(13) Kee, R. J.; Grear, J. F.; Smooke, M. D.; Miller, J. A. Chemkin-II: a Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics. Report SAND89-8009. Sandia, 1989.
-
[14]
(14) Lutz, A. E.; Kee, R. J.; Miller, J. A. SENKIN: a Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis. Report SAND87-8248. Sandia, 1987.
-
[15]
(15) Lu, T. F.; Law, C. K. Combust. Flame 2006, 144, 24.
-
[16]
(16) Jiang, Y.; Qiu, R. Acta Phys. -Chim. Sin. 2009, 25, 1019. [蒋勇, 邱榕. 物理化学学报, 2009, 25, 1019.]
-
[17]
(17) Wang, Q. D.; Fang, Y. M.;Wang, F.; Li, X. Y. Combust. Flame DOI: 10.1016/j.combustflame.2011.05.019.
-
[18]
(18) Herbinet, O.; Marquaire, P. M.; Battin-Leclerc, F.; Fournet, R. J. Anal. Appl. Pyrolysis 2007, 78, 419.
-
[19]
(19) Vasu, S. S.; Davidson, D. F.; Hong, Z.; Vasudevan, V.; Hanson, R. K. Proc. Combust. Inst. 2009, 32, 173.
-
[20]
(20) Shen, H. P. S.; Steinberg, J.; Vanderover, J.; Oehlschlaeger, M. A. Energy Fuels 2009, 23, 2482.
-
[21]
(21) Kee, R. J.; Grcar, J. F.; Smooke, M. D.; Miller, J. A. PREMIX: a Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames. Report SAND85-8240. Sandia, 1985.
-
[22]
(22) Kee, R. J.;Warnatz, J.; Miller, J. A. A Fortran Computer Code Package for the Evaluation of Gas-Phase Viscosities, Conductivities, and Diffusion Coefficients. Report SAND83-8209. Sandia, 1983.
-
[23]
(23) Ji, C.; Dames, E.;Wang, Y. L.;Wang, H.; E lfopoulos, F. N. Combust. Flame 2010, 157, 277.
-
[24]
(24) Kumar, K.; Sung, C. J. Combust. Flame 2007, 151, 209.
-
[25]
(25) Kumar, K.; Mittal, G.; Sung, C. J.; Law, C. K. Combust. Flame 2008, 153, 343.
-
[1]
-
-
[1]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[2]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[3]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[4]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[5]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[6]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[7]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[8]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[9]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[10]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[11]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[12]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[13]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[14]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[15]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[16]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[17]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[18]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[19]
Tingting Yu , Si Chen , Lianglong Sun , Tongtong Shi , Kai Sun , Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022
-
[20]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[1]
Metrics
- PDF Downloads(1081)
- Abstract views(2784)
- HTML views(92)