Citation:
	            
		            WU  Man-Man, TANG  Xiao-Feng, NIU  Ming-Li, ZHOU  Xiao-Guo, DAI  Jing-Hua, LIU  Shi-Lin. Ionization and Dissociation of Methyl Chloride in an Excitation Energy Range of 13-17 eV[J]. Acta Physico-Chimica Sinica,
							;2011, 27(12): 2749-2754.
						
							doi:
								10.3866/PKU.WHXB20112749
						
					
				
					 
				
	        
- 
	                	Using threshold photoelectron-photoion coincidence time-of-flight mass spectrometry, the photoionization and photodissociation of methyl chloride in the excitation energy range of 13-17 eV were investigated. CH3Cl+ ions in the A2A1 and B2E excited states were generated, both of which were completely dissociative. CH3+ fragments were mainly produced while CH2Cl+ fragment ions were observed as well. By fitting the time-of-flight profile the kinetic energy released distributions of CH3+ during the dissociation of the energy-selected CH3Cl+ ions were obtained. The dissociation of the CH3Cl+ (A2A1) ion followed rapid direct fragmentation while that of the B2E state showed statistical dissociation. Moreover, with the aid of the calculated potential energy surface the CH2Cl + fragment ions observed in the A2A1 state were generated from the statistical dissociation of the high vibrational excited CH3Cl+ (X2E) ions produced by the autoionization of the CH3Cl molecule.
- 
	                	  
- 
	                	
- 
			
                    [1]
                
			(1) Karlsson, L.; Jadrny, R.; Mattsson, L.; Chau, F. T.; Siegbahn, K. Phys. Scr. 1977, 16, 255. 
 
- 
			
                    [2]
                
			(2) Olney, T. N.; Cooper, G.; Chan,W. F.; Burton, G. R.; Brion, C. E.; Tan, K. H. Chem. Phys. 1996, 205, 421.  
 
- 
			
                    [3]
                
			(3) Locht, R.; Leyh, B.; Hoxha, A.; Jochims, H.W.; Baumgärtel, H. Chem. Phys. 2001, 272, 259.  
 
- 
			
                    [4]
                
			(4) Locht, R.; Leyh, B.; Hoxha, A.; Dehareng, D.; Jochims, H.W.; Baumgärtel, H. Chem. Phys. 2001, 272, 277.  
 
- 
			
                    [5]
                
			(5) Locht, R.; Leyh, B.; Hoxha, A.; Dehareng, D.; Hottmann, K.; Jochims, H.W.; Baumgärtel, H. Chem. Phys. 2001, 272, 293.  
 
- 
			
                    [6]
                
			(6) Holland, D. M. P.; Powis, I.; Ö hrwall, G.; Karlsson, L.; Niessen,W. V. Chem. Phys. 2006, 326, 535.  
 
- 
			
                    [7]
                
			(7) Novak, I.; Benson, J. M.; Potts, A.W. J. Electron. Spectrosc. Relat. Phenom. 1986, 41, 225.  
 
- 
			
                    [8]
                
			(8) Hikosaka, Y.; Eland, J. H. D.;Watson, T. M.; Powis, I. J. Chem. Phys. 2001, 115, 4593.  
 
- 
			
                    [9]
                
			(9) Tsuda, S.; Melton, C. E.; Hamill,W. H. J. Chem. Phys. 1964, 41, 689.  
 
- [10]
- 
			
                    [11]
                
			(11) Lossing, F. P. Bull. Soc. Chim. Belges. 1972, 81, 125. 
 
- 
			
                    [12]
                
			(12) Werner, A. S.; Tsai, B. P.; Baer, T. J. Chem. Phys. 1974, 60, 3650.  
 
- 
			
                    [13]
                
			(13) Eland, J. H. D.; Frey, R.; Kuestler, A.; Schulte, H.; Brehm, B. Int. J. Mass Spectrom. Ion Phys. 1976, 22, 155.  
 
- [14]
- 
			
                    [15]
                
			(15) Orth, R. G.; Dunbar, R. C. J. Chem. Phys. 1978, 68, 3254.  
 
- 
			
                    [16]
                
			(16) Won, D. S.; Kim, M. S.; Choe, J. C.; Ha, T. K. J. Chem. Phys. 2001, 115, 5454.  
 
- 
			
                    [17]
                
			(17) Brunetti, B.; Candori, P.; Andres, J. D.; Pirani, F. J. Phys. Chem. A 1997, 101, 7505.  
 
- 
			
                    [18]
                
			(18) Albertí, M.; Lucas, J. M. J. Phys. Chem. A 2000, 104, 1405.  
 
- 
			
                    [19]
                
			(19) Liu, X. H.; Gross, R. L.; Suits, A. G. Science 2001, 294, 2527.  
 
- 
			
                    [20]
                
			(20) Xi, H.W.; Huang, M. B.; Chen, B. Z.; Li,W. Z. J. Phys. Chem. A 2005, 109, 4381.  
 
- [21]
- 
			
                    [22]
                
			(22) Jarvis, G.;Weitzel, K.; Malow, M.; Baer, T.; Song, Y.; Ng, C. Rev. Sci. Instrum. 1999, 70, 3892.  
 
- 
			
                    [23]
                
			(23) Tang, X. F.; Niu, M. L.; Zhou, X. G.; Liu, S. L.; Liu, F. Y.; Shan, X. B.; Sheng, L. S. J. Chem. Phys. 2011, 134, 054312.  
 
- 
			
                    [24]
                
			(24) Tang, X. F.; Zhou, X. G.; Niu, M. L.; Liu, S. L.; Sheng, L. S. J. Phys. Chem. A 2011, 115, 6339.  
 
- 
			
                    [25]
                
			(25) Tang, X. F.; Zhou, X. G.; Niu, M. L.; Liu, S. L.; Sun, J. D.; Shan, X. B.; Liu, F. Y.; Sheng, L. S. Rev. Sci. Instrum. 2009, 80, 113101.  
 
- 
			
                    [26]
                
			(26) Zhen, C.; Tang, X. F.; Zhou, X. G.; Liu, S. L. Acta Phys. -Chim. Sin. 2011, 27, 1574. [甄承, 唐小锋, 周晓国, 刘世林. 物理化学学报, 2011, 27, 1574.] 
 
- 
			
                    [27]
                
			(27) Wang, S. S.; Kong, R. H.; Shan, X. B.; Sheng, L. S. Journal of Synchrotron Radiation 2006, 13, 415.  
 
- 
			
                    [28]
                
			(28) Franklin, J. L.; Hierl, P. M.; Whan, D. A. J. Chem. Phys. 1967, 47, 3148.  
 
- 
			
                    [29]
                
			(29) Powis, I.; Mansell, P. I.; Danby, C. J. Int. J. Mass Spectrom. Ion Phys. 1979, 32, 15.  
 
- 
			
                    [30]
                
			(30) Seccombe, D. P.; Chim, R. Y. L.; Jarvis, G. K.; Tuckett, R. P. Phys. Chem. Chem. Phys. 2000, 2, 769. 
 
- 
			
                    [31]
                
			(31) Xu, H. F.; Guo, Y.; Li, Q. F.; Shi, Y.; Liu, S. L.; Ma, X. X. J. Chem. Phys. 2004, 121, 3069.  
 
 
- 
			
                    [1]
                
			
- 
	                	
						  
- 
	                	
- 
				[1]
				Xiaolong Zhang , Mingshan Jin , Shaoli Liu , Bingfei Yan , Yun Li . Constructing High-Precision Potential Energy Surfaces Based on Physical Models: A Comprehensive Computational Chemistry Experiment. University Chemistry, 2025, 40(10): 257-262. doi: 10.12461/PKU.DXHX202411049 
- 
				[2]
				Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060 
- 
				[3]
				Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066 
- 
				[4]
				Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036 
- 
				[5]
				Yutong Liu , Xuemin Jing . Research Progress on the Catalytic Conversion of Methane in the Context of the “Dual Carbon” Goals. University Chemistry, 2025, 40(10): 101-113. doi: 10.12461/PKU.DXHX202412018 
- 
				[6]
				Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021 
- 
				[7]
				Qi Wang , Yuqing Liu , Jiefei Wang , Yuan-Yuan Ma , Jing Du , Zhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120 
- 
				[8]
				Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010 
- 
				[9]
				Huasen Lu , Shixu Song , Qisen Jia , Guangbo Liu , Luhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035 
- 
				[10]
				Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276 
- 
				[11]
				Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072 
- 
				[12]
				Yongpo Zhang , Xinfeng Li , Yafei Song , Mengyao Sun , Congcong Yin , Chunyan Gao , Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092 
- 
				[13]
				Jianan Zhang , Mengzhen Xu , Jiamin Liu , Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068 
- 
				[14]
				Junqing WEN , Ruoqi WANG , Jianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243 
- 
				[15]
				Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021 
- 
				[16]
				Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047 
- 
				[17]
				Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064 
- 
				[18]
				Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019 
- 
				[19]
				Yuhang Zhang , Weiwei Zhao , Hongwei Liu , Junpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-0. doi: 10.3866/PKU.WHXB202310004 
- 
				[20]
				Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042 
 
- 
				[1]
				
Metrics
- PDF Downloads(845)
- Abstract views(2836)
- HTML views(16)
 
  Login In
Login In
 
	                     
	                     
	                     
	                     DownLoad:
DownLoad: