Citation: WANG Yuan, DENG Gang-Hua, GUO Yuan. Analysis and Simulation of Experimental Configurations for Sum Frequency Generation and Difference Frequency Generation Vibrational Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2733-2742. doi: 10.3866/PKU.WHXB20112733 shu

Analysis and Simulation of Experimental Configurations for Sum Frequency Generation and Difference Frequency Generation Vibrational Spectroscopy

  • Received Date: 25 May 2011
    Available Online: 19 October 2011

    Fund Project: 国家自然科学基金(91027042, 21073199) (91027042, 21073199)中国科学院知识创新工程重要方向性项目(KJCX-EW-W09)资助 (KJCX-EW-W09)

  • The analysis of experimental configurations is the foundation for quantitative analysis in sum frequency generation vibrational spectroscopy (SFG-VS). The incident angles affect the signal intensity of some modes of vibration and the detection efficiency of the SFG signal. However, the issue of detection efficiency has not been included in previous experimental configuration analysis studies. According to the principle of the conservation of energy and momentum in coherent optics we simulated and analyzed the effect of incident angles, frequency of the incident light, and other factors on the output signal angle of difference frequency generation vibrational spectroscopy (DFG-VS) and SFG-VS. We intended to determine the reasonable and effective experimental configurations with more combinations of incident angles and less dispersion of the signal output angle. We found that SFG-VS with the co-propagation experimental configuration and DFG-VS with the counter-propagation experimental configuration favour the collection of the signal and quantitave analysis of the SFG-VS and DFG-VS.
  • 加载中
    1. [1]

      (1) Adamson, A.W.; Gast, A. P. Physical Chemistry of Surfaces, 6th ed.;Wiley: New York, 1997.

    2. [2]

      (2) Menzel, D. Science 2002, 295, 58.  

    3. [3]

      (3) Stevens, M. M.; George, J. H. Science 2005, 310, 1135.  

    4. [4]

      (4) Sanvito, S. Nature 2010, 467, 664.  

    5. [5]

      (5) Somorjai, G. A. Chem. Rev. 1996, 96, 1223.  

    6. [6]

      (6) Shen, Y. R. Nature 1989, 337, 519.  

    7. [7]

      (7) Shen, Y. R. Annu. Rev. Phys. Chem. 1989, 40, 327.  

    8. [8]

      (8) Shultz, M. J.; Schnitzer, C.; Simonelli, D.; Baldelli, S. Int. Rev. Phys. Chem. 2000, 19, 123.  

    9. [9]

      (9) Eisenthal, K. B. Chem. Rev. 1996, 96, 1343.  

    10. [10]

      (10) Miranda, P. B.; Shen, Y. R. J. Phys. Chem. B 1999, 103, 3292.  

    11. [11]

      (11) Richmond, G. L. Chem. Rev. 2002, 102, 2693.  

    12. [12]

      (12) Shen, Y. R.; Ostroverkhov, V. Chem. Rev. 2006, 106, 1140.  

    13. [13]

      (13) Wang, H. F.; Gan,W.; Lu, R.; Rao, Y.;Wu, B. H. Int. Rev. Phys. Chem. 2005, 24, 191.  

    14. [14]

      (14) Pluchery, O.; Humbert, C.; Valamanesh, M.; Lacaze, E.; Busson, B. Phys. Chem. Chem. Phys. 2009, 11, 7729.

    15. [15]

      (15) Le Rille, A.; Tabjeddine, A.; ZhengW. Q.; Peremans, A. Chem. Phys. Lett. 1997, 271, 95.  

    16. [16]

      (16) Mendoza, B. S.; MochanW. L.; Maytorena, J. A. Phys. Rev. B 1999, 60, 14334.  

    17. [17]

      (17) Tadjeddine, A.; Le Rille, A.; Pluchery, O.; Vidal, F.; Zheng,W. Q.; Peremans, A. Phys. Stat. Sol. 1999, 175, 89.  

    18. [18]

      (18) Le Rille, A.; Tadjeddine, A. J. Electroanal. Chem. 1999, 467, 238.  

    19. [19]

      (19) Rao, Y.; Tao, Y. S.;Wang, H. F. J. Chem. Phys. 2003, 119, 5226.  

    20. [20]

      (20) Lu, R.; Gan,W.;Wu, B. H.; Chen, H.;Wang, H. F. J. Phys. Chem. B 2004, 108, 7297.  

    21. [21]

      (21) Lu, R.; Gan,W.;Wu, B. H.; Zhang, Z.; Guo, Y.;Wang, H. F. J. Phys. Chem. B 2005, 109, 14118.  

    22. [22]

      (22) Chen, H.; Gan,W.; Lu, R.; Guo, Y.;Wang, H. F. J. Phys. Chem. B 2005, 109, 8064.  

    23. [23]

      (23) Gan,W.;Wu, B. H.; Chen, H.; Guo, Y.;Wang, H. F. Chem. Phys. Lett. 2005, 406, 467.  

    24. [24]

      (24) Gan,W.;Wu, D.; Zhang, Z.; Feng, R. R.;Wang, H. F. J. Chem. Phys. 2006, 124, 114705.  

    25. [25]

      (25) (a) Gan,W.;Wu, B. H.; Zhang, Z.; Guo, Y.;Wang, H. F. J. Phys. Chem. C 2007, 111, 8716.  

    26. [26]

      (b) Jena, K. C.; Hung, K. K. ; Schwantje, T. I.; Hore, D. K. J. Chem. Phys. 2011, 135, 044704

    27. [27]

      (26) Zheng, D. S.;Wang, Y.; Liu, A. A.;Wang, H. F. Int. Rev. Phys. Chem. 2008, 27, 629.  

    28. [28]

      (27) Wang, Y.; Cui, Z. F.;Wang, H. F. Chin. J. Chem. Phys. 2007, 20, 449.  

    29. [29]

      (28) Wang, H. F. Chin. J. Chem. Phys. 2004, 17, 362.

    30. [30]

      (29) Chen, H.; Gan,W.;Wu, B. H.;Wu, D.; Guo, Y.;Wang, H. F. J. Phys. Chem. B 2005, 109, 8053.  

    31. [31]

      (30) Gan,W.;Wu, D.; Zhang, Z.; Guo, Y.;Wang, H. F. Chin. J. Chem. Phys. 2006, 19, 20.  

    32. [32]

      (31) Gan,W.; Zhang, Z.; Feng, R. R.;Wang, H. F. J. Phys. Chem. C 2007, 111, 8726.  

    33. [33]

      (32) Ding, F.; Zhong, Q.; Brindza, M. R.; Fourkas, J. T.;Walker, R. A. Opt. Exp. 2009, 17, 14665-14675.

    34. [34]

      (33) Boyd, R.W. Nonlinear Optics, 2nd ed.;Wiley: New York, 2003; p 8.

    35. [35]

      (34) Bloembergen, N.; Pershan, P. S. Phys. Rev. 1962, 128, 606.  

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    3. [3]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    4. [4]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    5. [5]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    6. [6]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    7. [7]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    8. [8]

      Yan Li Fei Ding Jing Wang Jing Nan Yijun Li Xiaohang Qiu . Give a Man a Fish, and Teach a Man to Fish: Self-Designed Instrumental Analysis Experiments and Integration of Ideological and Political Elements. University Chemistry, 2024, 39(2): 208-213. doi: 10.3866/PKU.DXHX202310097

    9. [9]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    10. [10]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    13. [13]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    14. [14]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    15. [15]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    16. [16]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    17. [17]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    20. [20]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

Metrics
  • PDF Downloads(1003)
  • Abstract views(2819)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return