Citation:
WANG Yuan, DENG Gang-Hua, GUO Yuan. Analysis and Simulation of Experimental Configurations for Sum Frequency Generation and Difference Frequency Generation Vibrational Spectroscopy[J]. Acta Physico-Chimica Sinica,
;2011, 27(12): 2733-2742.
doi:
10.3866/PKU.WHXB20112733
-
The analysis of experimental configurations is the foundation for quantitative analysis in sum frequency generation vibrational spectroscopy (SFG-VS). The incident angles affect the signal intensity of some modes of vibration and the detection efficiency of the SFG signal. However, the issue of detection efficiency has not been included in previous experimental configuration analysis studies. According to the principle of the conservation of energy and momentum in coherent optics we simulated and analyzed the effect of incident angles, frequency of the incident light, and other factors on the output signal angle of difference frequency generation vibrational spectroscopy (DFG-VS) and SFG-VS. We intended to determine the reasonable and effective experimental configurations with more combinations of incident angles and less dispersion of the signal output angle. We found that SFG-VS with the co-propagation experimental configuration and DFG-VS with the counter-propagation experimental configuration favour the collection of the signal and quantitave analysis of the SFG-VS and DFG-VS.
-
-
-
[1]
(1) Adamson, A.W.; Gast, A. P. Physical Chemistry of Surfaces, 6th ed.;Wiley: New York, 1997.
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
-
[8]
(8) Shultz, M. J.; Schnitzer, C.; Simonelli, D.; Baldelli, S. Int. Rev. Phys. Chem. 2000, 19, 123.
- [9]
-
[10]
(10) Miranda, P. B.; Shen, Y. R. J. Phys. Chem. B 1999, 103, 3292.
- [11]
-
[12]
(12) Shen, Y. R.; Ostroverkhov, V. Chem. Rev. 2006, 106, 1140.
-
[13]
(13) Wang, H. F.; Gan,W.; Lu, R.; Rao, Y.;Wu, B. H. Int. Rev. Phys. Chem. 2005, 24, 191.
-
[14]
(14) Pluchery, O.; Humbert, C.; Valamanesh, M.; Lacaze, E.; Busson, B. Phys. Chem. Chem. Phys. 2009, 11, 7729.
-
[15]
(15) Le Rille, A.; Tabjeddine, A.; ZhengW. Q.; Peremans, A. Chem. Phys. Lett. 1997, 271, 95.
-
[16]
(16) Mendoza, B. S.; MochanW. L.; Maytorena, J. A. Phys. Rev. B 1999, 60, 14334.
-
[17]
(17) Tadjeddine, A.; Le Rille, A.; Pluchery, O.; Vidal, F.; Zheng,W. Q.; Peremans, A. Phys. Stat. Sol. 1999, 175, 89.
-
[18]
(18) Le Rille, A.; Tadjeddine, A. J. Electroanal. Chem. 1999, 467, 238.
-
[19]
(19) Rao, Y.; Tao, Y. S.;Wang, H. F. J. Chem. Phys. 2003, 119, 5226.
-
[20]
(20) Lu, R.; Gan,W.;Wu, B. H.; Chen, H.;Wang, H. F. J. Phys. Chem. B 2004, 108, 7297.
-
[21]
(21) Lu, R.; Gan,W.;Wu, B. H.; Zhang, Z.; Guo, Y.;Wang, H. F. J. Phys. Chem. B 2005, 109, 14118.
-
[22]
(22) Chen, H.; Gan,W.; Lu, R.; Guo, Y.;Wang, H. F. J. Phys. Chem. B 2005, 109, 8064.
-
[23]
(23) Gan,W.;Wu, B. H.; Chen, H.; Guo, Y.;Wang, H. F. Chem. Phys. Lett. 2005, 406, 467.
-
[24]
(24) Gan,W.;Wu, D.; Zhang, Z.; Feng, R. R.;Wang, H. F. J. Chem. Phys. 2006, 124, 114705.
-
[25]
(25) (a) Gan,W.;Wu, B. H.; Zhang, Z.; Guo, Y.;Wang, H. F. J. Phys. Chem. C 2007, 111, 8716.
-
[26]
(b) Jena, K. C.; Hung, K. K. ; Schwantje, T. I.; Hore, D. K. J. Chem. Phys. 2011, 135, 044704
-
[27]
(26) Zheng, D. S.;Wang, Y.; Liu, A. A.;Wang, H. F. Int. Rev. Phys. Chem. 2008, 27, 629.
-
[28]
(27) Wang, Y.; Cui, Z. F.;Wang, H. F. Chin. J. Chem. Phys. 2007, 20, 449.
-
[29]
(28) Wang, H. F. Chin. J. Chem. Phys. 2004, 17, 362.
-
[30]
(29) Chen, H.; Gan,W.;Wu, B. H.;Wu, D.; Guo, Y.;Wang, H. F. J. Phys. Chem. B 2005, 109, 8053.
-
[31]
(30) Gan,W.;Wu, D.; Zhang, Z.; Guo, Y.;Wang, H. F. Chin. J. Chem. Phys. 2006, 19, 20.
-
[32]
(31) Gan,W.; Zhang, Z.; Feng, R. R.;Wang, H. F. J. Phys. Chem. C 2007, 111, 8726.
-
[33]
(32) Ding, F.; Zhong, Q.; Brindza, M. R.; Fourkas, J. T.;Walker, R. A. Opt. Exp. 2009, 17, 14665-14675.
-
[34]
(33) Boyd, R.W. Nonlinear Optics, 2nd ed.;Wiley: New York, 2003; p 8.
-
[35]
(34) Bloembergen, N.; Pershan, P. S. Phys. Rev. 1962, 128, 606.
-
[1]
-
-
-
[1]
Zhiwen HUANG , Qi LIU , Jianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184
-
[2]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[3]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[4]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[5]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[6]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[7]
Supin Zhao , Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024
-
[8]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[9]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[10]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[11]
Yi Li , Zhaoxiang Cao , Peng Liu , Xia Wu , Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154
-
[12]
Yan Li , Fei Ding , Jing Wang , Jing Nan , Yijun Li , Xiaohang Qiu . Give a Man a Fish, and Teach a Man to Fish: Self-Designed Instrumental Analysis Experiments and Integration of Ideological and Political Elements. University Chemistry, 2024, 39(2): 208-213. doi: 10.3866/PKU.DXHX202310097
-
[13]
Lijun Dong , Pengcheng Du , Guangnong Lu , Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041
-
[14]
Xianggui Kong , Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067
-
[15]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[16]
Wenliang Wang , Weina Wang , Lixia Feng , Nan Wei , Sufan Wang , Tian Sheng , Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063
-
[17]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[18]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[19]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[20]
Hao Ren , Wen Zhao , Fangna Dai , Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145
-
[1]
Metrics
- PDF Downloads(1003)
- Abstract views(2865)
- HTML views(89)