Citation: WANG Yuan, DENG Gang-Hua, GUO Yuan. Analysis and Simulation of Experimental Configurations for Sum Frequency Generation and Difference Frequency Generation Vibrational Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2733-2742. doi: 10.3866/PKU.WHXB20112733 shu

Analysis and Simulation of Experimental Configurations for Sum Frequency Generation and Difference Frequency Generation Vibrational Spectroscopy

  • Received Date: 25 May 2011
    Available Online: 19 October 2011

    Fund Project: 国家自然科学基金(91027042, 21073199) (91027042, 21073199)中国科学院知识创新工程重要方向性项目(KJCX-EW-W09)资助 (KJCX-EW-W09)

  • The analysis of experimental configurations is the foundation for quantitative analysis in sum frequency generation vibrational spectroscopy (SFG-VS). The incident angles affect the signal intensity of some modes of vibration and the detection efficiency of the SFG signal. However, the issue of detection efficiency has not been included in previous experimental configuration analysis studies. According to the principle of the conservation of energy and momentum in coherent optics we simulated and analyzed the effect of incident angles, frequency of the incident light, and other factors on the output signal angle of difference frequency generation vibrational spectroscopy (DFG-VS) and SFG-VS. We intended to determine the reasonable and effective experimental configurations with more combinations of incident angles and less dispersion of the signal output angle. We found that SFG-VS with the co-propagation experimental configuration and DFG-VS with the counter-propagation experimental configuration favour the collection of the signal and quantitave analysis of the SFG-VS and DFG-VS.
  • 加载中
    1. [1]

      (1) Adamson, A.W.; Gast, A. P. Physical Chemistry of Surfaces, 6th ed.;Wiley: New York, 1997.

    2. [2]

      (2) Menzel, D. Science 2002, 295, 58.  

    3. [3]

      (3) Stevens, M. M.; George, J. H. Science 2005, 310, 1135.  

    4. [4]

      (4) Sanvito, S. Nature 2010, 467, 664.  

    5. [5]

      (5) Somorjai, G. A. Chem. Rev. 1996, 96, 1223.  

    6. [6]

      (6) Shen, Y. R. Nature 1989, 337, 519.  

    7. [7]

      (7) Shen, Y. R. Annu. Rev. Phys. Chem. 1989, 40, 327.  

    8. [8]

      (8) Shultz, M. J.; Schnitzer, C.; Simonelli, D.; Baldelli, S. Int. Rev. Phys. Chem. 2000, 19, 123.  

    9. [9]

      (9) Eisenthal, K. B. Chem. Rev. 1996, 96, 1343.  

    10. [10]

      (10) Miranda, P. B.; Shen, Y. R. J. Phys. Chem. B 1999, 103, 3292.  

    11. [11]

      (11) Richmond, G. L. Chem. Rev. 2002, 102, 2693.  

    12. [12]

      (12) Shen, Y. R.; Ostroverkhov, V. Chem. Rev. 2006, 106, 1140.  

    13. [13]

      (13) Wang, H. F.; Gan,W.; Lu, R.; Rao, Y.;Wu, B. H. Int. Rev. Phys. Chem. 2005, 24, 191.  

    14. [14]

      (14) Pluchery, O.; Humbert, C.; Valamanesh, M.; Lacaze, E.; Busson, B. Phys. Chem. Chem. Phys. 2009, 11, 7729.

    15. [15]

      (15) Le Rille, A.; Tabjeddine, A.; ZhengW. Q.; Peremans, A. Chem. Phys. Lett. 1997, 271, 95.  

    16. [16]

      (16) Mendoza, B. S.; MochanW. L.; Maytorena, J. A. Phys. Rev. B 1999, 60, 14334.  

    17. [17]

      (17) Tadjeddine, A.; Le Rille, A.; Pluchery, O.; Vidal, F.; Zheng,W. Q.; Peremans, A. Phys. Stat. Sol. 1999, 175, 89.  

    18. [18]

      (18) Le Rille, A.; Tadjeddine, A. J. Electroanal. Chem. 1999, 467, 238.  

    19. [19]

      (19) Rao, Y.; Tao, Y. S.;Wang, H. F. J. Chem. Phys. 2003, 119, 5226.  

    20. [20]

      (20) Lu, R.; Gan,W.;Wu, B. H.; Chen, H.;Wang, H. F. J. Phys. Chem. B 2004, 108, 7297.  

    21. [21]

      (21) Lu, R.; Gan,W.;Wu, B. H.; Zhang, Z.; Guo, Y.;Wang, H. F. J. Phys. Chem. B 2005, 109, 14118.  

    22. [22]

      (22) Chen, H.; Gan,W.; Lu, R.; Guo, Y.;Wang, H. F. J. Phys. Chem. B 2005, 109, 8064.  

    23. [23]

      (23) Gan,W.;Wu, B. H.; Chen, H.; Guo, Y.;Wang, H. F. Chem. Phys. Lett. 2005, 406, 467.  

    24. [24]

      (24) Gan,W.;Wu, D.; Zhang, Z.; Feng, R. R.;Wang, H. F. J. Chem. Phys. 2006, 124, 114705.  

    25. [25]

      (25) (a) Gan,W.;Wu, B. H.; Zhang, Z.; Guo, Y.;Wang, H. F. J. Phys. Chem. C 2007, 111, 8716.  

    26. [26]

      (b) Jena, K. C.; Hung, K. K. ; Schwantje, T. I.; Hore, D. K. J. Chem. Phys. 2011, 135, 044704

    27. [27]

      (26) Zheng, D. S.;Wang, Y.; Liu, A. A.;Wang, H. F. Int. Rev. Phys. Chem. 2008, 27, 629.  

    28. [28]

      (27) Wang, Y.; Cui, Z. F.;Wang, H. F. Chin. J. Chem. Phys. 2007, 20, 449.  

    29. [29]

      (28) Wang, H. F. Chin. J. Chem. Phys. 2004, 17, 362.

    30. [30]

      (29) Chen, H.; Gan,W.;Wu, B. H.;Wu, D.; Guo, Y.;Wang, H. F. J. Phys. Chem. B 2005, 109, 8053.  

    31. [31]

      (30) Gan,W.;Wu, D.; Zhang, Z.; Guo, Y.;Wang, H. F. Chin. J. Chem. Phys. 2006, 19, 20.  

    32. [32]

      (31) Gan,W.; Zhang, Z.; Feng, R. R.;Wang, H. F. J. Phys. Chem. C 2007, 111, 8726.  

    33. [33]

      (32) Ding, F.; Zhong, Q.; Brindza, M. R.; Fourkas, J. T.;Walker, R. A. Opt. Exp. 2009, 17, 14665-14675.

    34. [34]

      (33) Boyd, R.W. Nonlinear Optics, 2nd ed.;Wiley: New York, 2003; p 8.

    35. [35]

      (34) Bloembergen, N.; Pershan, P. S. Phys. Rev. 1962, 128, 606.  

  • 加载中
    1. [1]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    2. [2]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    3. [3]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    4. [4]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    5. [5]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    6. [6]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    7. [7]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    8. [8]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    9. [9]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    10. [10]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    11. [11]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    12. [12]

      Yan Li Fei Ding Jing Wang Jing Nan Yijun Li Xiaohang Qiu . Give a Man a Fish, and Teach a Man to Fish: Self-Designed Instrumental Analysis Experiments and Integration of Ideological and Political Elements. University Chemistry, 2024, 39(2): 208-213. doi: 10.3866/PKU.DXHX202310097

    13. [13]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    14. [14]

      Xianggui Kong Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067

    15. [15]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    16. [16]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    17. [17]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    18. [18]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

Metrics
  • PDF Downloads(1003)
  • Abstract views(2865)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return