Citation: ZHAO Jing-Mao, LI Jun. Corrosion Inhibition Performance of Carbon Steel in Brine Solution Containing H2S and CO2by Novel Gemini Surfactants[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 623-629. doi: 10.3866/PKU.WHXB201112293 shu

Corrosion Inhibition Performance of Carbon Steel in Brine Solution Containing H2S and CO2by Novel Gemini Surfactants

  • Received Date: 17 October 2011
    Available Online: 29 December 2011

    Fund Project: 国家自然科学基金(51171013)资助项目 (51171013)

  • A series of novel gemini surfactants containing hydroxyl group have been synthesized including 1,3-bis(dodecyl dimethyl ammonium chloride)-2-propanol, 1,3-bis(myristyl dimethyl ammonium chloride)-2-propanol, 1,3-bis(hexadecyl dimethyl ammonium chloride)-2-propanol, and 1,3-bis(octadecyl dimethyl ammonium chloride)-2-propanol, designated as n-3OH-n (n=12, 14, 16, 18, respectively). The corrosion inhibition for carbon steel in brine solution containing H2S and CO2 was investigated using weight loss method, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). The results showed that the inhibition efficiencies (IEs) obtained from all of the methods employed demonstrated a clear trend, with the IEs of the gemini surfactants ranked as 14-3OH-14>12-3OH-12> 16-3OH-16>18-3OH-18. Among them, 14-3OH-14 and 12-3OH-12 acted as excellent corrosion inhibitors with IE values greater than 95% at an additive concentration of 35 mg·L-1. Potentiodynamic polarization curves clearly revealed that the gemini surfactants are mixed-type inhibitors which preferentially inhibit the anodic corrosion process. Adsorption of the synthesized gemini surfactants n-3OH-n (n=12, 14, 16) onto a carbon steel surface obeys the Langmuir adsorption isotherm and they exhibit a mixed physical and chemical adsorption. An adsorption model was proposed to elucidate the inhibition mechanism of gemini surfactants.
  • 加载中
    1. [1]

      (1) Choi, Y. S.; Nesic, S.; Ling, S. Electrochim. Acta 2011, 56, 1752.  

    2. [2]

      (2) Yin, Z. F.; Zhao,W. Z. Electrochim. Acta 2008, 53, 3690.  

    3. [3]

      (3) Hu, S. Q.; Hu, J. C.; Shi, X.; Zhang, J.; Guo,W. Y. Acta Phys. -Chim. Sin. 2009, 25 (12), 2524. [胡松青, 胡建春, 石鑫, 张军, 郭文跃. 物理化学学报, 2009, 25 (12), 2524.]

    4. [4]

      (4) Trabanelli, G. Corrosion 1991, 47, 410.  

    5. [5]

      (5) Asefi, D.; Arami, M.; Mahmoodi, N. M. Corrosion Sci. 2010, 52, 794.  

    6. [6]

      (6) Qiu, L. G.; Xie, A. J.; Shen, Y. H. Appl. Surf. Sci. 2005, 246, 1.  

    7. [7]

      (7) Chen, Q.; Zhang, D.; Li, R.; Liu, H.; Hu, Y. Thin Solid Films 2006, 496, 42.  

    8. [8]

      (8) Menger, F. M.; Keiper, J. S. Angew. Chem. Int. Edit. 2000, 39, 1906.  

    9. [9]

      (9) Bagha, A. R. T.; Bahrami, H.; Movassagh, B.; Arami, M.; Arirshahi, S. H.; Menger, F. M. Colloid. Surf. A 2007, 307, 121.  

    10. [10]

      (10) Yao, S. Z.; Jiang, X. H.; Zhou, L. M.; Lv, Y. J.; Hu, X. Q. Mater. Chem. Phys. 2007, 104, 301.  

    11. [11]

      (11) Bagha, A. R. T.; Bahrami, H.; Movassagh, B.; Arami, M.; Menger, F. M. Dyes and Pigments 2007, 72, 331.  

    12. [12]

      (12) Qiu, L. G.;Wang, Y. M.; Jiang, X. Corrosion Sci. 2008, 50, 576.  

    13. [13]

      (13) Achouri, M. E.; Infante, M. R.; Izquierdo, F.; Kertit, S.; uttaya, H. M.; Nciri, B. Corrosion Sci. 2001, 43, 19.  

    14. [14]

      (14) Qiu, L. G.; Xie, A. J.; Shen, Y. H. Corrosion Sci. 2005, 47, 273.  

    15. [15]

      (15) Huang,W.; Zhao, J. Colloid. Surf. A 2006, 278, 246.  

    16. [16]

      (16) Qiu, L. G.; Xie, A. J.; Shen, Y. H. Mater. Chem. Phys. 2005, 91, 269.  

    17. [17]

      (17) Wang, X.; Yang, H.;Wang, F. Corrosion Sci. 2010, 52, 1268.  

    18. [18]

      (18) Hegazy, M. A.; Abdallah, M.; Ahmed, H. Corrosion Sci. 2010, 52, 2897.  

    19. [19]

      (19) Hegazy, M. A. Corrosion Sci. 2009, 51, 2610.  

    20. [20]

      (20) Yang, J. Z.; Miao, Z. C.; Xu, L. Fine Chemicals 2005, 22, 49. [杨建洲, 苗宗成, 林里. 精细化工, 2005, 22, 49.]

    21. [21]

      (21) Tang, L. B.; Mu, G. N.; Liu, G. H. Corrosion Sci. 2003, 45, 2251.  

    22. [22]

      (22) Cao, C. N. Journal of Chinese Society of Corrosion and Protection 1985, 5, 155. [曹楚南. 中国腐蚀与防护学报, 1985, 5, 155.]

    23. [23]

      (23) Jüttner, K. Electrochim. Acta 1990, 35, 1501.  

    24. [24]

      (24) Paskossy, T. J. Electroanal. Chem. 1994, 364, 111.  

    25. [25]

      (25) Saliyan, V. R.; Adhikari, A. V. Corrosion Sci. 2008, 50, 55.  

    26. [26]

      (26) Benedetti, A. V.; Sumodjo, P. T. A.; Nobe, K.; Cabot, P. L.; Proud,W. G. Electrochim. Acta 1995, 40, 2657.  

    27. [27]

      (27) Hassan, H. H. Electrochim. Acta 2007, 53, 1722.  

    28. [28]

      (28) Quraishi, M. A.; Rawat, J. Mater. Chem. Phys. 2001, 70, 95.  

    29. [29]

      (29) Muralidharan, S.; Phani, K. L. N.; Pitchumani, S.; Ravichandran, S.; Iyer, S. V. K. J. Electrochem. Soc. 1995, 142, 1478.  

    30. [30]

      (30) Christov, M.; Popova, A. Corrosion Sci. 2004, 46, 1613.  

    31. [31]

      (31) Qiu, L. G.;Wu, Y. Progress in Corrosion Research; Bettini, E. L. Ed.; Nova Science Publishers, Inc.: New York, 2007, 159.

    32. [32]

      (32) Elachouri, M.; Hajji, M. S.; Salem, M.; Kertit, S.; Aride, J.; Coudert, R.; Essassi, E. NACE. International; TEXAS: Houston, 1996, 52, 103.

    33. [33]

      (33) Savitri, B. V.; Mayanna, S. Indian J. Chem. Technol. 1996, 3, 103.

    34. [34]

      (34) Hu, S. Q.; Hu, J. C.; Fan, C. C.; Mi, S. Q.; Zhang, J. Guo,W. Y. Acta Phys. -Chim. Sin. 2010, 26, 2163. [胡松青, 胡建春, 范成成, 米思奇, 张军, 郭文跃. 物理化学学报, 2010, 26, 2163.]

    35. [35]

      (35) Okafor, P. C.; Zheng, Y. G. Corrosion Sci. 2009, 51, 850.  

    36. [36]

      (36) Ma, H. Y.; Cheng, X. L.; Chen, S. H.;Wang, C.; Zhang, J. P.; Yang, H. Q. J. Electroanal. Chem. 1998, 451, 11.  

    37. [37]

      (37) Cheng, X. L.; Ma, H. Y.; Zhang, J. P.; Chen, X.; Chen, S. H.; Yang, H. Q. Corrosion 1998, 54, 369.  

    38. [38]

      (38) Ma, H. Y.; Cheng, X. L.; Chen, S. H.; Li, G. Q; Chen, X.; Lei, S. B.; Yang, H. Q. Corrosion 1998, 54, 634.  

    39. [39]

      (39) Gao, Y. M.; Chen, J. J.; Lei, L. C.; Yang, H. Y.; Cao, D. C.;Wu, W. T. Journal of Chinese Society of Corrosion and Protection 2000, 20, 142. [高延敏, 陈家坚, 雷良才, 杨怀玉, 曹殿珍, 吴维弢. 中国腐蚀与防护学报, 2000, 20, 142.]

    40. [40]

      (40) Zhang, J.; Yu,W. Z.; Yan, Y. G.; Yu, L. J.; Ren, Z. J. Acta Phys. -Chim. Sin. 2010, 26, 1386. [张军, 于维钊, 燕友果, 于立军, 任振甲. 物理化学学报, 2010, 26, 1386.]

  • 加载中
    1. [1]

      Xingyu Liao Xiangming Yi Kin Shing Chan . 追凶之路上的怪客——硫化氢. University Chemistry, 2025, 40(6): 172-176. doi: 10.12461/PKU.DXHX202408039

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    7. [7]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    8. [8]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    9. [9]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    10. [10]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    15. [15]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Shuyong Zhang Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078

    17. [17]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    18. [18]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

Metrics
  • PDF Downloads(947)
  • Abstract views(2650)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return