Citation: NG Yan-Yan, LIU Min, JIA Song-Yan, FENG Jian-Ping, SONG Chun-Shan, GUO Xin-Wen. Production of 5-Hydroxymethylfurfural from Inulin Catalyzed by Sulfonated Amorphous Carbon in an Ionic Liquid[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 686-692. doi: 10.3866/PKU.WHXB201112292 shu

Production of 5-Hydroxymethylfurfural from Inulin Catalyzed by Sulfonated Amorphous Carbon in an Ionic Liquid

  • Received Date: 27 September 2011
    Available Online: 29 December 2011

    Fund Project: 国家自然科学基金(20803005)资助项目 (20803005)

  • The production of 5-hydroxylmethylfurfural (HMF) from inulin over sulfonated amorphous carbon was studied in an ionic liquid, 1-butyl-3-methylimidazolium chloride ([Bmim]Cl). The effects of reaction solvent, water content, reaction temperature, reaction time, and catalyst dosage on the yield of HMF were investigated. Experimental results indicated that optimum reaction conditions required a reaction temperature of 100 °C, a reaction time of 60 min, an R value of 5 (R represents the molar ratio of added water to fructose units in inulin), and a mass ratio of catalyst to inulin of 1:3, affording HMF in yields of up to 50%.
  • 加载中
    1. [1]

      (1) Huber, G.W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044.  

    2. [2]

      (2) Ragauskas, A. J.;Williams, C. K.; Davison, B. H.; Britovsek, G.; Cairney J.; Eckert, C. A.; Frederick,W. J.; Hallett, J. P.; Leak, D. J.; Liotta, C. L.; Mielenz, J. R.; Murphy, R.; Templer, R.; Tschaplinski, T. Science 2006, 311, 484.  

    3. [3]

      (3) Freemantle, M. Chem. Eng. News. 1998, 7, 32.

    4. [4]

      (4) Wasserscheid, P.; Keim,W. Angew. Chem. Int. Edit. 2000, 39, 3772.  

    5. [5]

      (5) Yan, L. F.; Zhu, Q. S. Chemistry Online 2001, 11, 673. [阎立峰, 朱清时. 化学通报, 2001, 11, 673.]

    6. [6]

      (6) Kamm, B.; Kamm, M.; Schmidt, M. Lignocellulose-Based Chemical Products and Produce Family Trees;Wiley-VCH Verlag GmbH: Germany, 2006, 2; pp 97-149.

    7. [7]

      (7) Roman-leshkov, Y.; Barrett, C. J.; Liu, Z. Y.; Dumesic, J. A. Nature 2007, 447, 982.  

    8. [8]

      (8) Asghari, F. S.; Yoshida, H. Ind. Eng. Chem. Res. 2006, 45 (7), 2163.

    9. [9]

      (9) Sherrard, E. C.; Kressman, F.W. Ind. Eng. Chem. 1945, 37, 5.

    10. [10]

      (10) Zhao, H. B.; Holladay, J. E.; Brown, H.; Zhang, Z. C. Science 2007, 316, 1597.  

    11. [11]

      (11) Ishida, H.; Seri, K. J. Mol. Catal. A-Chem. 1996, 112, 163.  

    12. [12]

      (12) Su, Y.; Brown, H. M.; Huang, X.W.; Zhou, X. D.; Amonette, J. E.; Zhang, Z. C. Appl. Catal. A-Gen. 2009, 361, 117.  

    13. [13]

      (13) Rinaldi, R.; Palkovits, R.; Schüth, F. Angew. Chem. Int. Edit. 2008, 47, 8047.  

    14. [14]

      (14) Ohara, M.; Takagaki, A.; Nishimura, S.; Ebitani, K. Appl. Catal. A 2010, 383, 149.  

    15. [15]

      (15) Qi, X. H.;Watanabe, M.; Aidaa, T. M.; Smith, R. L., Jr. Green Chem. 2008, 10, 799.  

    16. [16]

      (16) Wu, S. X.; Fan, H. L.; Xie, Y.; Cheng, Y.;Wang, Q.; Zhang, Z. F.; Han, B. X. Green Chem. 2010, 12, 1215.  

    17. [17]

      (17) Bicker, M.; Hirth, J.; Vogel, H. Green Chem. 2003, 5, 280.  

    18. [18]

      (18) Chheda, J. N.; Roman-Leshkov, Y.; Dumesic, J. A. Green Chem. 2007, 9, 342.  

    19. [19]

      (19) Qi, X. H.;Watanabe, M.; Aida, T. M.; Smith, R. L., Jr. Green Chem. 2010, 12, 1855.  

    20. [20]

      (20) Hu, S. Q.; Zhang, Z. F.; Zhou, Y. Z.; Song, J. L.; Fan, H. L.; Han, B. X. Green Chem. 2009, 11, 873.  

    21. [21]

      (21) Onda, A.; Ochi, T.; Yanagisawa, K. Green Chem. 2008, 10, 1033.  

    22. [22]

      (22) Suganuma, S.; Nakajima, K.; Kitano, M.; Yamaguchi, D.; Kato, H.; Hayashi, S.; Hara, M. J. Am. Chem. Soc. 2008, 130, 12787.  

    23. [23]

      (23) Pang, J. F.;Wang, A. Q.; Zhang, T. Chem. Commun. 2010, 46, 6935.  

    24. [24]

      (24) Sun, X.; Li, Y. Angew. Chem. Int. Edit. 2004, 43, 597.  

    25. [25]

      (25) Toda, M.; Takagaki, A.; Okamura, M.; Kondo, J. N.; Hayashi, S.; Hara, M. Nature 2005, 438, 177.  

    26. [26]

      (26) Wang, H. Y.; Zhang, C. B.; He, H.;Wang, L. Acta Phys. -Chim. Sin. 2010, 26 (7), 1873. [王华瑜, 张长斌, 贺泓, 王莲. 物理化学学报, 2010, 26 (7), 1873.]

    27. [27]

      (27) Zhou,W.; Yoshino, M.; Kita, H.; Okamoto, K. Ind. Eng. Chem. Res. 2001, 40, 4801.  

    28. [28]

      (28) Zhou, J. M.; Li, H. Y.; Lin, G. D.; Zhang, H. B. Acta Phys. - Chim. Sin. 2010, 26 (11), 3080. [周金梅, 李海燕, 林国栋, 张鸿斌. 物理化学学报, 2010, 26 (11), 3080.]

    29. [29]

      (29) Okamura, M.; Takagaki, A.; Toda, M.; Kondo, J. N.; Tatsumi, T.; Domen, K.; Hara, M.; Hayashi, S. Chem. Mater. 2006, 18, 3039.  

    30. [30]

      (30) Crisci, A. J.; Tucker, M. H.; Lee, M. Y.; Jang, S. G.; Dumesic, J. A.; Scott, S. L. ACS Catal. 2011, 1, 719.  

    31. [31]

      (31) http://zh.wikipedia.org (accessed December 2011).

    32. [32]

      (32) Qi, X. H.;Watanabe, M.; Aida, T. M.; Smith, R. L. Green Chem. 2009, 11, 1327.  

  • 加载中
    1. [1]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    2. [2]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    3. [3]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    4. [4]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    5. [5]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    8. [8]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    9. [9]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    12. [12]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    13. [13]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    14. [14]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    15. [15]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    18. [18]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    19. [19]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

Metrics
  • PDF Downloads(1240)
  • Abstract views(2813)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return