Citation: ZHANG Qing-You, LONG Hai-Lin, FENG Xiu-Lin, SUO Jing-Jie, ZHANG Dan-Dan, LI Jing-Ya, XU Li-Zhuang, XU Lu. MOLMAP Descriptor and Its Application to Mutagenicity Prediction[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 541-546. doi: 10.3866/PKU.WHXB201112281 shu

MOLMAP Descriptor and Its Application to Mutagenicity Prediction

  • Received Date: 27 October 2011
    Available Online: 28 December 2011

    Fund Project: 国家自然科学基金(20875022) (20875022) 教育部留学回国人员科研启动基金(2009(1001)) (2009(1001))河南省国际科技合作项目(114300510009)资助 (114300510009)

  • The molecular mapping of atom-level properties (MOLMAP) descriptor was generated on the basis of chemical bond descriptors of a molecule by Kohonen self-organizing map with a specific al rithm. The bond descriptors were composed of the physiochemical properties of the chemical bond, such as the difference of the charges between the two atoms and topological properties, such as the number of hetero-atoms connected to the two atoms. In this paper, the MOLMAP descriptors were used to predict the mutagenicity of 4075 organic substances (2305 mutagens and 1770 nonmutagens in Ames test). Random forests were used to construct mathematical models with three kinds of descriptors: (1) MOLMAP descriptors of different size; (2) global molecular descriptors; (3) the combination of MOLMAP descriptors and global molecular descriptors. The correct prediction percentage of out of bag (OOB) cross-validation of the whole data set reached 85.4%. To test the stability of the prediction model, it was used to predict the properties of a test set that was composed of 472 compounds collected from another database. The percentage of correct prediction of the test set was 86.7%. The prediction results were improved compared with the results of previous work.
  • 加载中
    1. [1]

      (1) Patlewicz, G.; Rodford, R.;Walker, J. D. Environ. Toxicol. Chem. 2003, 22, 1885.  

    2. [2]

      (2) Benigni, R. Chem. Rev. 2005, 105, 1767.  

    3. [3]

      (3) Hansen, K.; Mika, S.; Schroeter, T.; Sutter, A.; Laak, A. T.; Steger-Hartmann, T.; Heinrich, N. Muller, K. R. J. Chem. Inf. Model. 2009, 49, 2077.  

    4. [4]

      (4) Casalegno, M.; Benfenati, E.; Sello, G. J. Chem. Inf. Model. 2011, 51, 1564.  

    5. [5]

      (5) Ames, B. N.; McCann, J.; Yamasaki, E. Mutation Res. 1975, 3, 347.

    6. [6]

      (6) Mortelmans, K.; Zeiger, E. Mutation Res. 2000, 455, 29.  

    7. [7]

      (7) Meier, J. R. Mutation Res. 1988, 196, 211.

    8. [8]

      (8) Zheng, M. Y.; Liu, Z. G.; Xue, C. X. Zhu,W. L.; Chen, K. X.; Luo, X. M.; Jiang, H. L. Bioinformatics 2006, 22, 2099.  

    9. [9]

      (9) Liao, Q.; Yao, J. H.; Yuan, S. G. Molecular Diversity 2007, 11, 59.  

    10. [10]

      (10) Kazius, J.; McGuire, R.; Bursi, R. J. Med. Chem. 2005, 48, 312.  

    11. [11]

      (11) Helma, C.; Cramer, T.; Kramer, S.; Raedt, L. D. J. Chem. Inf. Comput. Sci. 2004, 44, 1402.  

    12. [12]

      (12) Popelier, P. L. A.; Smith, P. J.; Chaudry, U. A. J. Comput. -Aided. Mol. Des. 2004, 18, 709.  

    13. [13]

      (13) He, L. N.; Jurs, P. C.; Custer, L. L.; Durham, S. K.; Pearl, G. M. Chem. Res. Toxicol. 2003, 16, 1567.  

    14. [14]

      (14) Gupta, S.; Matthew, S.; Abreu, P. M.; Aires-de-Sousa, J. Bioor. Med. Chem. 2006, 14, 1199.  

    15. [15]

      (15) Zhang, Q. Y.; Aires-de-Sousa, J. J. Chem. Inf. Model. 2005, 45, 1775.  

    16. [16]

      (16) Latino, D. A. R. S.; Aires-de-Sousa, J. Angew. Chem. Int. E dit. 2006, 45, 2066.

    17. [17]

      (17) Latino, D. A. R. S.; Zhang, Q. Y.; Aires-De-Sousa, J. Bioinformatics 2008, 24, 2236.  

    18. [18]

      (18) Latino, D. A. R. S.; Aires-de-Sousa, J. J. Chem. Inf. Model. 2009, 49, 1839.  

    19. [19]

      (19) Zhang, Q. Y.; Aires-de-Sousa, J. J. Chem. Inf. Model. 2007, 47, 1.  

    20. [20]

      (20) http://www.chemaxon.com/

    21. [21]

      (21) Young, S. S.; mbar, V. K.; Emptage, M. R.; Cariello, N. F.; Lambert, C. Chem. Int. Lab. Syst. 2002, 60, 5.  

    22. [22]

      (22) Kohonen, T. Biol. Cybern. 1982, 43, 59.  

    23. [23]

      (23) Aires-de-Sousa, J. Chem. Int. Lab. Syst. 2002, 61, 167.  

    24. [24]

      (24) http://www.dq.fct.unl.pt/staff/jas/jatoon/

    25. [25]

      (25) Long, H. L.; Feng, X. L.; Suo, J. J.; Zhang, D. D.; Li, J. Y.; Zhang, Q. Y.; Xu, L. Computers and Applied Chemistry accepted. [龙海林, 冯秀林, 索净洁, 张丹丹, 李静亚, 张庆友, 许禄. 计算机与应用化学, 已接受.]

    26. [26]

      (26) Dai, Z. J.; Zhou,W.; Yuan, Z. M. Acta Phys. -Chim. Sin. 2011, 27, 1654. [代志军, 周玮, 袁哲明. 物理化学学报, 2011, 27, 1654.]

    27. [27]

      (27) Yang, G. B.; Li, Z. R.; Rao, H. B.; Li, X. Y.; Chen, Y. Z. Acta Phys. -Chim. Sin. 2010, 26, 3351. [杨国兵, 李泽荣, 饶含兵, 李象远, 陈宇综. 物理化学学报, 2010, 26, 3351.]

    28. [28]

      (28) Breiman, L. Machine Learning 1996, 24, 123.

    29. [29]

      (29) Díaz-Uriarte, R.; Andrés, S. A. D. BMC Bioinformatics 2006, 7, 3.  

    30. [30]

      (30) http://www.R-project.org.

    31. [31]

      (31) Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.; Feuston, B. P. J. Chem. Inf. Comput. Sci. 2003, 43, 1947.  

    32. [32]

      (32) Breiman, L. Machine Learning 2001, 45, 5.  

  • 加载中
    1. [1]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    4. [4]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    7. [7]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    8. [8]

      Zhongbin Pan Shijie Huang Yunjie Luo Hongzhen Xie . Design of a Comprehensive Experiment for Determining Permanganate Index (CODMn) in Drinking Water. University Chemistry, 2024, 39(7): 354-360. doi: 10.12461/PKU.DXHX202311040

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    12. [12]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    13. [13]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    14. [14]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    17. [17]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    18. [18]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    19. [19]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    20. [20]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

Metrics
  • PDF Downloads(595)
  • Abstract views(1867)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return