Citation: SUN Ya-Ping, FAN Xin-Zhuang, LU Yong-Hong, XU Hai-Bo. Electrocatalytic Performance and Pseudo-Capacitive Characteristics of Modified Graphite Electrode with Fe3+/Fe2+ in H2SO4 Solution[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 603-608. doi: 10.3866/PKU.WHXB201112272 shu

Electrocatalytic Performance and Pseudo-Capacitive Characteristics of Modified Graphite Electrode with Fe3+/Fe2+ in H2SO4 Solution

  • Received Date: 7 November 2011
    Available Online: 27 December 2011

    Fund Project: 山东省博士基金(BS2010NJ018, BS2011NJ019) (BS2010NJ018, BS2011NJ019)中央高校基础科研基金(201022006)资助项目 (201022006)

  • The electrocatalytic performance and pseudocapacitive characteristics of a modified graphite electrode (MGE) with Fe3+/Fe2+ in H2SO4 solution were studied by cyclic voltammetry (CV), constant current charge-discharge measurements, and electrochemical impedance spectroscopy (EIS). The results showed that the MGE had high electrocatalytic activity and od reversible characteristics for the redox reaction of Fe3+/Fe2+ because of a large quantity of oxygen-containing functional groups on the MGE surface. The apparent area-specific capacitance of the MGE in 2.0 mol·L-1 H2SO4 solution containing 0.5 mol·L-1 Fe3+ and 0.5 mol·L-1 Fe2+ reached 2.157 F·cm-2, which was almost double that in 2.0 mol·L-1 H2SO4 without Fe3+/ Fe2+ . Meanwhile, increasing the concentration of iron ions increased the capacitance of the MGE. The addition of Fe3+/Fe2+ made the charge-discharge curves more symmetric and change more slowly, which increases the charge-discharge time, and effectively improves the capacitive energy storage and high power performance for an electrochemical capacitor (EC). The obvious capacitive characteristics were confirmed by EIS, and are attributed to the oxygen-containing functional groups on the MGE and the Faraday redox reaction of Fe3+/Fe2+ in the thin electrolyte layer. Therefore, the oxygen-containing functional groups on the MGE surface and redox reaction of Fe3+/Fe2+ can be used together for energy storage and release.
  • 加载中
    1. [1]

      (1) Patrice, S.; Yury, G. Nature Materials 2008, 7, 845.  

    2. [2]

      (2) Tian, Z.W.; Dong, Q. F.; Zheng, M. S.; Lin, Z. G. Based on Liquid Phase Electrochemically Active Material for Super Capacitor. CN Patent 200610087625.1, 2006-11-22. [田昭武, 董全峰, 郑明森, 林祖赓. 基于液相中的电化学活性物质的超级电容器: 中国, 200610087625.1[P]. 2006-11-22.]

    3. [3]

      (3) Bae, C. H.; Roberts, E. P. L.; Dryfe, R. A.W. Electrochim. Acta 2002, 48, 279.  

    4. [4]

      (4) Moraw, F.; Fatih, K.;Wilkinson, D.; Girard, F. Adv. Mater. Res. 2007, 15-17, 315.

    5. [5]

      (5) Hagg, C. M.; Skyllas-Kazacos, M. J. Appl. Electrochem. 2002, 32, 1063.  

    6. [6]

      (6) Qian, P.; Zhang, H. M.; Chen, J.;Wen, Y. H.; Luo, Q. T.; Liu, Z. H.; You, D. J.; Yi, B. L. J. Power Sources 2008, 175, 613.  

    7. [7]

      (7) Chen, P. H.; McCreery, R. L. Anal. Chem. 1996, 68, 3958.  

    8. [8]

      (8) Banks, C. E.; Davis, T. J.;Wild ose, G. G.; Compton, R. G. Chem. Commun. 2005, 829.

    9. [9]

      (9) McCreery, R. L. Electroanalytical Chemistry; Bard, A. J. Ed.; Dekker: New York, 1991; Vol. 17, pp 221-374.

    10. [10]

      (10) Li, Q.; Li, K. X.; Sun, G. H.; Fan, H.; Gu, J. N. Acta Phys. - Chim. Sin. 2006, 22, 1445. [李强, 李开喜, 孙国华, 范慧, 谷建宁. 物理化学学报, 2006, 22, 1445.]

    11. [11]

      (11) Xu, H. B.; Fan, X. Z.; Lu, Y. H.; Zhong, L.; Kong, X. F.;Wang, J. Carbon 2010, 48, 3300.  

    12. [12]

      (12) Fan, X. Z.; Lu, Y. H.; Xu, H. B.; Kong, X. F.;Wang, J. J. Mater. Chem. 2011, 21, 18753.  

    13. [13]

      (13) Fan, X. Z.; Lu, Y. H.; Kong, X. F.; Xu, H. B.;Wang, J. Acta Phys. -Chim. Sin. 2011, 27, 887. [范新庄, 芦永红, 孔祥峰, 徐海波, 王佳. 物理化学学报, 2011, 27, 887.]

    14. [14]

      (14) Xu, H. B.; Yan, C.W.; Lu, Y. H.; Liu, J. G. A Redox Reaction Electrochemical Capacitor. CN Patent 201110028479.6, 2011. [徐海波, 严川伟, 芦永红, 刘建国. 一种氧化还原反应电化学电容器: 中国, 201110028479.6[P]. 2011.]

    15. [15]

      (15) Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum Publishers: New York, 1999; pp 200-225.

    16. [16]

      (16) Ye, J. S.; Liu, X.; Cui, H. F.; Zhang,W. D.; Sheu, F. S.; Lim, T. M. Electrochem. Commun. 2005, 7, 249.  

    17. [17]

      (17) Gu, Q. C. New Chemical Table; Jiangsu Science & Technology Publishing House: Nanjing, 1998; pp 1287-1316. [顾庆超. 新编化学用表. 南京: 江苏科技出版社, 1998: 1287-1316.]

    18. [18]

      (18) Pupkevich, V.; Glibin, V.; Karamanev, D. Electrochem. Commun. 2007, 9, 1924.  

    19. [19]

      (19) Hu, C. G.;Wang,W. L.;Wang, S. X.; Zhu,W.; Li, Y. Diamond Relat. Mater. 2003, 12, 1259.

    20. [20]

      (20) Hamann, C. H.; Hamnett, A.; Vielstich,W. Electrochemistry; Chemical Industry Press: Beijing, 2010; pp 201-207; translated by Chen, Y. X., Xia, X. H., Cai, J. Y. [卡尔·H. 哈曼, 安德鲁· 哈姆内特, 沃尔夫·菲尔施蒂希. 电化学. 陈艳霞, 夏兴华, 蔡俊译, 译. 北京: 化学工业出版社, 2010: 201-207.]

    21. [21]

      (21) Li, L. X.; Song, H. H.; Zhang, Q. C.; Yao, J. Y. Chen, X. H. J. Power Sources 2009, 187, 268.  

    22. [22]

      (22) Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937.  

    23. [23]

      (23) Sipahi, M.; Parlak, E. A.; Gul, A.; Ekinci, E.; Yardim, M. F.; Sarac, A. S. Prog. Org. Coat. 2008, 62, 96.  

    24. [24]

      (24) Hu, C. C.;Wang, C. C. J. Electrochem. Soc. 2003, 150, A1079.

  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    5. [5]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    6. [6]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    7. [7]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    10. [10]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    13. [13]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    14. [14]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    17. [17]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    18. [18]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

Metrics
  • PDF Downloads(888)
  • Abstract views(2245)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return