Citation: JIANG Li-Long, MA Yong-De, CAO Yan-Ning, YANG Yang, WEI Ke-Mei. Modified Bauxite Supported Ruthenium Catalysts for Hydrogen Evolution in the Water-Gas Shift Reaction[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 674-680. doi: 10.3866/PKU.WHXB201112271 shu

Modified Bauxite Supported Ruthenium Catalysts for Hydrogen Evolution in the Water-Gas Shift Reaction

  • Received Date: 19 September 2011
    Available Online: 27 December 2011

    Fund Project: 福建省自然科学基金(2011J01036) (2011J01036) 福建省教育厅基金(JA09012) (JA09012) 福州大学人才启动基金及福州大学科技发展基金项目(2010-XQ-05)资助 (2010-XQ-05)

  • Hydrothermally treated bauxite with high surface area was used as a ruthenium-based catalyst support. A series of Ru/bauxite and 2.0% (mass fraction) Ru/Al2O3 catalysts were prepared by incipientwetness impregnation. The loading content of ruthenium in the Ru/bauxite catalysts was varied from 1.0% to 4.0%. The catalysts were thoroughly characterized by X-ray fluorescence (XRF), low temperature N2 physical adsorption, X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR), and CO temperature-programmed desorption (CO-TPD). The performances of the catalysts for the water-gas shift reaction were also investigated. The results indicated that Ru/bauxite catalysts possess an excellent ability to evolve hydrogen in the water-gas shift reaction. This was attributed to the interaction between Ru and Fe2O3 in the modified bauxite, which could decrease the reduction temperature of Fe2O3, and also improve the adsorption-desorption behavior and decrease the desorption temperature of Ru/bauxite catalysts for CO molecules, resulting in higher activity in the water-gas shift reaction.
  • 加载中
    1. [1]

      (1) Amphlett, J. C.; Mann, R. F.; Peppley, B. A. Int. J. Hydrog. Energy 1996, 21 (8), 673.

    2. [2]

      (2) Hou, Z. J.; Yu, H. M.; Yi, B. L.; Han, M. Electrochemistry 2000, 6 (4), 379. [侯中军, 俞红梅,衣宝廉, 韩明. 电化学, 2000, 6 (4), 379.]

    3. [3]

      (3) Han, J.; Kim, I. S.; Choi, K. S. J. Power Sources 2000, 86 (1), 223.

    4. [4]

      (4) Li, S. Y.; Zhou, X. Q. Coal Chem. Ind. 2007, 2, 31. [李速延, 周晓奇. 煤化工, 2007, 2, 31.]

    5. [5]

      (5) Yao, C. Z.; Zhang, X. Y.;Wang, L. C.; Cao, Y.; Dai,W. L.; Fan, K. N.;Wu, D.; Sun, Y. H. Acta Chim. Sin. 2006, 64 (3), 269. [姚成漳, 张新荣, 王路存, 曹勇, 戴维林, 范康年, 吴东, 孙予罕. 化学学报, 2006, 64 (3), 269.]

    6. [6]

      (6) Li, L.; Zhan, Y. Y.; Chen, C. Q.; She, Y. S.; Lin, X. Y.; Zheng, Q. Acta Phys. -Chim. Sin. 2009, 25 (7), 1397. [李雷, 詹瑛瑛, 陈崇启, 佘育生, 林性贻, 郑起. 物理化学学报, 2009, 25 (7), 1397.]

    7. [7]

      (7) Panagiotopoulou, P.; Kondarides, D. I. Catal. Today 2006, 112, 49.  

    8. [8]

      (8) Venu pal, A.; Scurrell, M. S. Appl. Catal A 2004, 258, 241.  

    9. [9]

      (9) Khan, A.; Chen, P.; Boolchand, P.; Smirniotis, P. G. J. Catal. 2008, 253 (1), 91.

    10. [10]

      (10) Kam, R.; Selomulya, C.; Amal, R.; Scott, J. J. Catal. 2010, 273, 73.

    11. [11]

      (11) Meunier, F. C.; Reid, D.; guet, A.; Shekhtman, S.; Hardacre, C.; Burch, R.; Deng,W. J. Catal. 2007, 247 (2), 277.

    12. [12]

      (12) Jacobs, G.; Patterson, P. M.; Graham, U. M.; Crawford, A. C.; Davis, B. H. Int. J. Hydrog. Energy 2005, 30 (11), 1265.

    13. [13]

      (13) Gunawardana, P.; Lee, H. C.; Kim, D. H. Int. J. Hydrog. Energy 2009, 34 (3), 1336.

    14. [14]

      (14) Linganiso, L. Z.; Jacobs, G.; Azzam, K. G. Appl. Catal. A 2011, 394 (1), 105.

    15. [15]

      (15) Zane, F.; Trevisan, V.; Pinna, F.; Signoretto, M.; Menegazzo, F. Appl. Catal. B 2009, 89 (1), 303.

    16. [16]

      (16) Li, J.; Chen, J. L.; Song,W.; Liu, J. L.; Shen,W. J. Appl. Catal. A 2008, 334, 321.  

    17. [17]

      (17) Graf, P. O.; de Vlieger, D. J. M.; Mojet, B. L.; Lefferts, L. J. Catal. 2009, 262 (2), 181.

    18. [18]

      (18) Basińska, A.; Domka, F. Catal. Lett. 1993, 22 (4), 327.

    19. [19]

      (19) Utaka, T.; Okanishi, T.; Takeguchi, T.; Kikuchi, R.; Eguchi, K. Appl. Catal. A 2003, 245, 343.  

    20. [20]

      (20) Guo, X. Y.; Hua, N. P.; Du, Y. K.; Yang, P. Chin. J. Catal. 2007, 28 (2), 137. [郭晓勇, 华南平, 杜玉扣, 杨平. 催化学报, 2007, 28 (2), 137.]

    21. [21]

      (21) Wei, C. D.; Ma, H.W.; Yang, D. F. Bull. Chin. Ceram. Soc. 2005, 33 (1), 77281. [魏存弟, 马鸿文, 杨殿范. 硅酸盐通报, 2005, 33 (1), 77281.]

    22. [22]

      (22) Sing, K. S.W.; Everett, D. H.; Haul, R. A.W. Pure Appl. Chem. 1985, 57 (4), 603.

    23. [23]

      (23) Lloyd, L.; Ridler, D. E.; Twigg, M. V. Catalyst Handbook, 2nd ed.; London:Wolfe, 1989; pp 283-33.

    24. [24]

      (24) Venu pal, A.; Aluha, J.; Mogano, D.; Scurrell, M. S. Appl. Catal. A 2003, 245 (1), 149.

    25. [25]

      (25) Jozwiaka,W. K.; Kaczmarek, E.; Manieckia, T. P.; Ignaczaka, W.; Maniukiewicz,W. Appl. Catal. A 2007, 326 (1), 17.

    26. [26]

      (26) Wang,W.; Ran, R.; Shao, Z. P. Int. J. Hydrog. Energy 2011, 36, 755.  

    27. [27]

      (27) Basinska, A.; Józwiak,W. K.; Góralski, J.; Domka, F. Appl. Catal. A 2000, 190, 107.  

    28. [28]

      (28) Li, J. M.; Huang, F. Y.;Weng,W. Z. Catal. Today 2008, 131, 179.  

    29. [29]

      (29) Menon, P. G. Chem. Rev. 1994, 94, 1021.  

    30. [30]

      (30) Nagai, Y.; Hirabayashi, T.; Dohmae, K. J. Catal. 2006, 242, 103.  

    31. [31]

      (31) Nagai, Y.; Dohmae, K.; Ikeda, Y.; Takagi, N. Angew Chem. Int. Edit. 2008, 47, 9303.  

    32. [32]

      (32) Pan, Z. Y.; Dong, M. H.; Meng, X. K.; Zhang, X. X.; Mu, X. H.; Zong, B. N. Chem. Eng. Sci. 2007, 62 (10), 2712.

  • 加载中
    1. [1]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    2. [2]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    5. [5]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    8. [8]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    9. [9]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    10. [10]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    11. [11]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    12. [12]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    13. [13]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(783)
  • Abstract views(1991)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return