Citation: LIU Yan-Fang, MA Xin-Guo, YI Xin, ZHU Yong-Fa. Controllable Synthesis and Photocatalytic Performance of Bismuth Phosphate Nanorods[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 654-660. doi: 10.3866/PKU.WHXB201112232 shu

Controllable Synthesis and Photocatalytic Performance of Bismuth Phosphate Nanorods

  • Received Date: 15 September 2011
    Available Online: 23 December 2011

    Fund Project: 国家自然科学基金(20925725, 50972070, 51102150) (20925725, 50972070, 51102150)国家重点基础研究发展规划项目(973) (2007CB613303)资助 (973) (2007CB613303)

  • BiPO4 nanorods with controlled morphologies were fabricated using a hydrothermal method. The photocatalytic activity of the BiPO4 nanorods was investigated by their ability to degrade methylene blue (MB). The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-Vis diffuse reflectance spectroscopy (DRS). It was found that glycerol content, reaction time and temperature, and concentration of precursor influenced the morphology and structure of the product. The glycerol content and concentration of precursor mainly influence the morphology of the product. As the glycerol content increases, the aspect ratio first increases, and then decreases. The aspect ratio of the product increases and the size decreases as the concentration of precursor is lowered. When the reaction time is short, the crystallinity of the product is poor, and it forms a hexa nal phase. Hexa nal BiPO4 transforms into the monoclinic product when the reaction time is longer. The optimal temperature for crystal formation was found to be 160 °C. The results show that BiPO4 nanorods possess excellent photocatalytic activity under ultraviolet light. The photocatalytic activity of BiPO4 increased with an increase of aspect ratio and decrease of particle size. The crystallinity of the product has a significant influence on its photocatalytic activity. BiPO4 with higher crystallinity has higher photocatalytic activity, and monoclinic BiPO4 has higher photocatalytic activity than hexa nal BiPO4.
  • 加载中
    1. [1]

      (1) Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev. 2010, 110, 6503.  

    2. [2]

      (2) Kudo, A.; Mesiki, Y. Chem. Soc. Rev. 2009, 38, 253.  

    3. [3]

      (3) Qin, X.; Jing, L. Q.; Xue, L. P.; Luan, Y. B.; Fu, H. G. Chin. J. Inorg. Chem. 2008, 24, 1108. [秦旭, 井立强, 薛连鹏, 栾云博, 付宏刚. 无机化学学报, 2008, 24, 1108.]

    4. [4]

      (4) Zhao, D.; Chen, C. C.;Wang, Y. F.; Ji, H.W.; Ma,W. H.; Zhao, J. C. J. Phys. Chem. C 2008, 112, 5993.  

    5. [5]

      (5) Tokunaga, S.; Kato, H.; Kudo, A. Chem. Mater. 2001, 13, 4624.  

    6. [6]

      (6) Yao,W. F.; Xu , X. H.;Wang, H.; Zhou, J. T.; Yang, X. N.; Zhang, Y.; Shang, S. X.; Huang, B. B. Appl. Catal. B 2004, 52, 109.  

    7. [7]

      (7) Zhang, K. L.; Liu, C. M.; Huang, F. Q.; Zheng, C.;Wang,W. D. Appl. Catal. B 2006, 68, 125.  

    8. [8]

      (8) Fu, H. B.; Pan, C. S.; Zhang, L.W.; Zhu, Y. F. Mater. Res. Bull. 2007, 42, 696.  

    9. [9]

      (9) Zhang, L.W.; Xu, T. G.; Zhao, X.; Zhu, Y. F. Appl. Catal. B 2010, 98, 138.  

    10. [10]

      (10) Pan, C. S.; Zhu, Y. F. Environ. Sci. Technol. 2010, 44, 5570.  

    11. [11]

      (11) Pan, C. S.; Zhu, Y. F. J. Mater. Chem. 2011, 21, 4235.  

    12. [12]

      (12) Shang, M.;Wang,W. Z.; Ren, J.; Sun, S. M.; Zhang, L. CrystEngComm 2010, 12, 1754.  

    13. [13]

      (13) Fu, H. B.; Zhang, S. C.; Xu, T. G.; Zhu, Y. F.; Chen, J. M. Environ. Sci. Technol. 2008, 42, 2085.  

    14. [14]

      (14) Shi, R.;Wang, Y. J.; Li, D.; Xu, J.; Zhu, Y. F. Appl. Catal. B 2010, 100, 173.  

    15. [15]

      (15) Pan, C. S.; Li, D.; Ma, X. G.; Chen, Y.; Zhu, Y. F. Catal. Sci. Technol. 2011, 1, 1399.  

    16. [16]

      (16) Li, D.; Shi, R.; Pan, C. S.; Zhu, Y. F.; Zhao, H. J. CrystEngComm 2011, 13, 4695.  

    17. [17]

      (17) Xue, F.; Li, H. B.; Zhu, Y. C.; Xiong, S. L.; Zhang, X.W.; Wang, T. T.; Liang, X.; Qian, Y. T. J. Solid State Chem. 2009, 182, 1396.  

    18. [18]

      (18) Huang, K. L.; Liu, R. S.; Yang, Y. P.; Liu, S. Q.;Wang, L. P. Acta Phys. -Chim. Sin. 2007, 23, 655. [黄可龙, 刘人生, 杨幼平, 刘素琴, 王丽平. 物理化学学报, 2007, 23, 655].

    19. [19]

      (19) Li, G. F.; Ding, Y.; Zhang, Y. F.; Lu, Z.; Sun, H. Z.; Chen, R. J. Colloid Interface Sci. 2011, 363, 497.  

    20. [20]

      (20) Xiang, Q.; Liu, R. L.; Shi, L. Y.; Pan, Q. Y. Journal of Shanghai University (Natural Science) 2006, 12, 12. [向群, 刘荣利, 施利毅, 潘庆谊. 上海大学学报(自然科学版), 2006, 12, 12.]

    21. [21]

      (21) Zhu,W. Q.; Xu, L.; Ma, J.; Ren, J. M.; Chen, Y. S. Acta Phys. -Chim. Sin. 2010, 26, 1284. [朱文庆, 许磊, 马瑾, 任建梅, 陈亚芍. 物理化学学报, 2010, 26, 1284.]

    22. [22]

      (22) Rose, C. L.; Mooney-Slater. Z. Kristallogr. 1962, 117, 371.  

    23. [23]

      (23) Song, X. C.; Yang, E.; Zheng, Y. F.;Wang, Y. Acta Phys. -Chim. Sin. 2007, 23, 1123. [宋旭春, 杨娥, 郑遗凡, 王芸. 物理化学学报, 2007, 23, 1123.]

    24. [24]

      (24) Terzian, R.; Serpone, N.; Minero, C.; Pelizzetti, E. J. Catal., 1991, 128, 352.  

    25. [25]

      (25) Xu, P. C.; Liu, Y.;Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261. [许平昌, 柳阳, 魏建红, 熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.]

    26. [26]

      (26) Fu, H. B.; Yao,W. Q.; Zhang, L.W.; Zhu, Y. F. Mater. Res. Bull. 2008, 43, 2617.  

    27. [27]

      (27) Xian, T.; Yang, H.; Dai, J. F.;Wei, Z. Q.; Ma, J. Y.; Feng,W. J. Chin. J. Catal. 2011, 32, 618. [县涛, 杨华, 戴剑锋, 魏智强, 马金元, 冯旺军. 催化学报, 2011, 32, 618.]

    28. [28]

      (28) Xiao, Y.; Dang, L. Q.; An, L. Z.; Bai, S. Y.; Lei, Z. B. Chin. J. Catal. 2008, 29, 31. [肖义, 党利琴, 安丽珍, 白士英, 雷志斌. 催化学报, 2008, 29, 31.]  

  • 加载中
    1. [1]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    7. [7]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    8. [8]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    16. [16]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    19. [19]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(1649)
  • Abstract views(3490)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return