Citation: GUO Yuan-Hui, MEI Qun-Bo, YAN Fang, WANG Ling-Xia, WENG Jie-Na, ZHANG Bin, HUANG Wei. Application of Iridium(III) Complexes in Phosphorescent Chemosensors[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 739-750. doi: 10.3866/PKU.WHXB201112222 shu

Application of Iridium(III) Complexes in Phosphorescent Chemosensors

  • Received Date: 10 October 2011
    Available Online: 22 December 2011

    Fund Project: 国家重点基础研究发展规划项目(973) (2009CB930601) (973) (2009CB930601) 国家自然科学基金(50803027, 50903001, 20905038) (50803027, 50903001, 20905038)江苏省高校自然科学基础研究面上项目(08KJD430020)资助 (08KJD430020)

  • Chemosensors have developed quickly because they are widely used in biology. Compared to organic fluorescent chemosensors, phosphorescent chemosensors based on heavy metal complexes have attracted great attention because of distinctive merits such as relatively long lifetimes and significant Stokes shifts. Iridium complexes had been successfully used as phosphorescent chemosensors because of their relatively short excited state lifetime, high photoluminescence efficiency, and wide range emission colors that can be tuned by the coordinated ligands. In this review, we have summarized the applications of iridium complexes in cation, anion, oxygen, amino acid, and pH sensors. Furthermore, the advantages and disadvantages of these chemosensors have been compared to others. Finally, some prospects for future study are proposed.
  • 加载中
    1. [1]

      (1) Demas, J. N.; DeGraff, B. A. Coord. Chem. Rev. 2001, 211, 317.  

    2. [2]

      (2) Cheng, Y.W.; Yang, Z.;Wei, H.;Wang, Y. Y.;Wei, L. M.; Zhang, Y. F. Acta Phys. -Chim. Sin. 2010, 26, 3127. [程应武, 杨志, 魏浩, 王艳艳, 魏良明, 张亚非. 物理化学学报, 2010, 26, 3127.]

    3. [3]

      (3) Li, M. J.; Chu, B.W. K.; Zhu, N. Y.; Yam, V.W.W. Inorg. Chem. 2007, 46, 720.  

    4. [4]

      (4) Amoroso, A. J.; Arthur, R. J.; Coogan, M. P.; Court, J. B.; Moreira, V. F.; Hayes, A. J.; Lloyd, D.; Millet, C.; Pope, S. J. A. New J. Chem. 2008, 7, 1097.

    5. [5]

      (5) Carraway, E. R.; Demas, J. N.; DeGraff, B. A.; Baeon, J. R. Anal. Chem. 1991, 63, 337.  

    6. [6]

      (6) Ge, F.; Cao, R. G.; Zhu, B.; Li, J. J.; Xu, D. S. Acta Phys. -Chim. Sin. 2010, 26, 1779. [戈芳, 曹瑞国, 朱斌, 李经建, 徐东升. 物理化学学报, 2010, 26, 1779.]

    7. [7]

      (7) Lin, Z. H.; Zhao, Y. G.; Duan, C. Y.; Zhang, B. G.; Bai, Z. P. Dalton Trans. 2006, 30, 3678.

    8. [8]

      (8) Lo, H. S.; Yip, S. K.;Wong, K. M. C.; Zhu, N. Y.; Yam, V.W. W. Organometallics 2006, 25, 3537.  

    9. [9]

      (9) McFarland, S. A.; Finney, N. S. Chem. Commun. 2003, 388.

    10. [10]

      (10) Yu, X. H.; Ge, G. P.; Zhang, G. L.; Guo, H. Q. Acta Phys. -Chim. Sin. 2010, 26, 1184. [于晓航, 葛国平, 张国林, 郭海清. 物理化学学报, 2010, 26, 1184.]

    11. [11]

      (11) Tong, B.; Mei, Q.;Wang, S.; Fang, Y.; Meng, Y.;Wang, B. J. Mater. Chem. 2008, 18, 1636.  

    12. [12]

      (12) Kirgan, R. A.; Sullivan, B. P.; Rillema, D. P. Top. Curr. Chem. 2007, 281, 45.  

    13. [13]

      (13) Roundhill, D. M. Photochemistry and Photophysics of Metal Complexes; Plenum Press: New York, 1994.

    14. [14]

      (14) Kumar, A.; Sun, S. S.; Lees, A. J. Coord. Chem. Rev. 2008, 252, 922.  

    15. [15]

      (15) Cannizzo, A.; Blanco-Rodriguez, A. M.; Nahhas, A. E.; Sebera, J.; Zalis, S.; Chergui, M. J. Am. Chem. Soc. 2008, 130, 8967.  

    16. [16]

      (16) King, K. A.;Watts, R. J. J. Am. Chem. Soc. 1987, 109, 1589.  

    17. [17]

      (17) Ayala, N. P.; Flynn, C. M., Jr.; Sacksteder, L.; Demas, J. N.; DeGraff, B. A. J. Am. Chem. Soc. 1990, 112, 3837.  

    18. [18]

      (18) Polson, M.; Fracasso, S.; Bertolasi, V.; Ravaglia, M.; Scandola, F. Inorg. Chem. 2004, 43, 1950.  

    19. [19]

      (19) Xia,W. S.; Schmehl, R. H.; Li, C. J. J. Am. Chem. Soc. 1999, 121, 5599.  

    20. [20]

      (20) Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3.  

    21. [21]

      (21) Silva, A. P.; Fox, D. B.; Huxley, A. J. M.; Moody, T. S. Coord. Chem. Rev. 2000, 205, 41.  

    22. [22]

      (22) Frausto da Silva, J. J. R.;Williams, R. J. P. The Biological Chemistry of the Elements: The Inorganic Chemistry of Life; Clarendon: Oxford, 1991.

    23. [23]

      (23) Gutknecht, J. J. Membr. Biol. 1981, 61, 61.  

    24. [24]

      (24) Ho, M. L.; Cheng, Y. M.;Wu, L. C.; Chou, P. T.; Lee, G. H.; Hsu, F. C.; Chi, Y. Polyhedron 2007, 26, 4886.  

    25. [25]

      (25) Chen, X. Y.; Shi, J.; Li, Y. M.;Wang, F. L.;Wu, X.; Guo, Q. X.; Liu, L. Org. Lett. 2009, 11, 4426.  

    26. [26]

      (26) Xu, Z.; Baek, K. H.; Kim, H. N.; Cui, J.; Qian, X.; Spring, D. R.; Shin, I.; Yoon, J. J. Am. Chem Soc. 2010, 132, 601.  

    27. [27]

      (27) Xue, L.; Liu, C.; Jiang, H. Org. Lett. 2009, 11, 1655.  

    28. [28]

      (28) Araya, J. C.; Gajardo, J.; Moya, S. A.; Aguirre, P.; Toupet, L.; Williams, J. A. G.; Escadeillas, M.; LeBozec H.; Guerchais, V. New J. Chem. 2010, 34, 21.  

    29. [29]

      (29) Zhao, N.;Wu, Y. H.;Wen, H. M.; Zhang, X.; Chen, Z. N. Organometallics, 2009, 28, 5603.  

    30. [30]

      (30) Charbonniere, L. J.; Ziessel, R. F.; Sans, C. A.; Harriman, A. Inorg. Chem. 2003, 42, 3466.  

    31. [31]

      (31) Li, C. K.; Lu, X. X.;Wong, K. M. C.; Chan, C. L.; Zhu, N.; Yam, V.W.W. Inorg. Chem. 2004, 43, 7421.  

    32. [32]

      (32) Muegge, B. D.; Richter, M. M. Anal. Chem. 2002, 74, 547.  

    33. [33]

      (33) Schmittel, M.; Lin, H. Inorg. Chem. 2007, 46, 9139.  

    34. [34]

      (34) Lin, H.; Cinar, M. E.; Schmittel, M. Dalton Trans. 2010, 39, 5130.  

    35. [35]

      (35) Ho, M. L.; Hwang, F. M.; Chen, P. N.; Hu, Y. H.; Cheng, Y. M.; Chen, K. S.; Lee, G. H.; Chi, Y.; Chou, P. T. Org. Biomol. Chem. 2006, 4, 98.  

    36. [36]

      (36) Brandel, J.; Sairenji, M.; Ichikawa, K.; Nabeshima, T. Chem. Commun. 2010, 3958.

    37. [37]

      (37) Zhao, Q.; Cao, T. Y.; Li, F. Y.; Li, X. H.; Jing, H.; Yi, T.; Huang, C. H. Organometallics 2007, 26, 2077.  

    38. [38]

      (38) Zhao, Q.; Liu, S. J.; Li, F. Y.; Yi, T.; Huang, C. H. Dalton Trans. 2008, 3836.

    39. [39]

      (39) Shi, H. F.; Liu, S. J.; Sun, H. B.; Xu,W. J.; Zhao, Q.; Huang,W. Chem. Eur. J. 2010, 16, 12158.  

    40. [40]

      (40) Yang, H.; Qian, J. J.; Li, Z. G.; Li, D. R.;Wu, H. X.; Yang, S. P. Inorg. Chim. Acta 2010, 263, 1755.

    41. [41]

      (41) Beer, P. D.; Gale, P. A. Angew. Chem. Int. Edit. 2001, 40, 486.  

    42. [42]

      (42) Special Issues on anion receptors, Coord. Chem. Rev. 2003, 240

    43. [43]

      (43) Martnez-Mnez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419.  

    44. [44]

      (44) Zhao, Q.; Liu, S. J.; Shi, M.; Li, F. Y.; Jing, H.; Yi, T.; Huang, C. H. Organometallics 2007, 26, 5922.  

    45. [45]

      (44) Zhao, Q.; Liu, S. J.; Shi, M.; Li, F. Y.; Jing, H.; Yi, T.; Huang, C. H. Organometallics 2007, 26, 5922.

    46. [46]

      (46) You, Y.; Park, S. Y. Adv. Mater. 2008, 20, 3820.  

    47. [47]

      (47) Zhao, Q.; Li, F.; Liu, S.; Yu, M.; Liu, Z.; Yi, T.; Huang, C. Inorg. Chem. 2008, 47, 9256.  

    48. [48]

      (47) Zhao, Q.; Li, F.; Liu, S.; Yu, M.; Liu, Z.; Yi, T.; Huang, C. Inorg. Chem. 2008, 47, 9256.

    49. [49]

      (49) Xu,W.; Liu, S.; Sun, H.; Zhao, X.; Zhao, Q.; Sun, S.; Cheng, S.; Ma, T.; Zhou, L.; Huang,W. J. Mater. Chem. 2011, 21, 7572.  

    50. [50]

      (49) Xu,W.; Liu, S.; Sun, H.; Zhao, X.; Zhao, Q.; Sun, S.; Cheng, S.; Ma, T.; Zhou, L.; Huang,W. J. Mater. Chem. 2011, 21, 7572.

    51. [51]

      (50) odall,W.;Williams, J. A. G. J. Chem. Soc. Dalton Trans. 2000, 2893.

    52. [52]

      (52) Lou, B.; Chen, Z. Q.; Bian Z. Q.; Huang, C. H. New J. Chem. 2010, 34, 132.  

    53. [53]

      (53) Zhao, N.;Wu, Y. H.;Wang, R. M.; Shi, L. X.; Chen, Z. N. Analyst 2011, 136, 2277.  

    54. [54]

      (54) Shahrokhian, S. Anal. Chem. 2001, 73, 5972.  

    55. [55]

      (55) Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P. F.; Rosenberg, I. H.; D?A stino, R. B.;Wilson, P.W. F. N. Engl. J. Med. 2002, 346, 476.  

    56. [56]

      (55) Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P. F.; Rosenberg, I. H.; D?A stino, R. B.;Wilson, P.W. F. N. Engl. J. Med. 2002, 346, 476.

    57. [57]

      (56) Lin,W.; Long, L.; Yuan, L.; Cao, Z.; Chen, B.; Tan,W. Org. Lett. 2008, 10, 5577.

    58. [58]

      (58) Chen, H. L.; Zhao, Q.;Wu, Y. B.; Li, F. Y.; Yang, H.; Yi, T.; Huang, C. H. Inorg. Chem. 2007, 46, 11075.  

    59. [59]

      (59) Zhao, Q.; Xiong, L.; Chen, H.;Wu, Y.; Dong, Z.; Zhou, Z.; Li, F. Inorg. Chem. 2010, 49, 6402.  

    60. [60]

      (60) Kwon, T. H.; Kim, H. J.; Hong, J. I. Chem. Eur. J. 2008, 14, 9613.  

    61. [61]

      (61) Matsumoto, T.; Urano, Y.; Shoda, T.; Kojima, H.; Nagano, T. Org. Lett. 2007, 9, 3375.  

    62. [62]

      (62) Huo, F. J.; Sun, Y. Q.; Su, J.; Chao, J. B.; Zhi, H. J.; Yin, C. X. Org. Lett. 2009, 11, 4918.  

    63. [63]

      (63) Zhao, N.;Wu, Y. H.; Shi, L. X.; Lin, O. P.; Chen, Z. N. Dalton Trans. 2010, 39, 8288.  

    64. [64]

      (64) Ma, D. L.;Wong,W. L.; Chung,W. H.; Chan, F. Y.; So, P. K.; Lai, T. S.; Zhou, Z. Y.; Leung, Y. C.;Wong, K. Y. Angew. Chem. Int. Edit. 2008, 47, 3735.  

    65. [65]

      (64) Ma, D. L.;Wong,W. L.; Chung,W. H.; Chan, F. Y.; So, P. K.; Lai, T. S.; Zhou, Z. Y.; Leung, Y. C.;Wong, K. Y. Angew. Chem. Int. Edit. 2008, 47, 3735.

    66. [66]

      (65) Liu, Y.; Li, M.; Zhao, Q.;Wu, H.; Huang, K.; Li, F. Inorg. Chem. doi: 10.1021/ic102481x

    67. [67]

      (67) Leung, S. K.; Kwok, K. Y.; Zhang, K. Y.; Lo, K. K.W. Inorg. Chem. 2010, 49, 4984.  

    68. [68]

      (68) Zhang, K. Y.; Lo, K. K.W. Inorg. Chem. 2009, 48, 6011.  

    69. [69]

      (69) Lo, K. K.W.; Chung, C. K.; Zhu, N. Chem. Eur. J. 2003, 9, 475.  

    70. [70]

      (69) Lo, K. K.W.; Chung, C. K.; Zhu, N. Chem. Eur. J. 2003, 9, 475.

    71. [71]

      (71) Huynh, L.;Wang, Z.; Yang, J.; Stoeva, V.; Lough, A.; Manners, I.;Winnik, M. A. Chem. Mater. 2005, 17, 4765.  

    72. [72]

      (72) Derosa, M. C.; Hodgson, D. J.; Enright, G. D.; Dawson, B.; Evans, C. E. B.; Crutchley, R. J. J. Am. Chem. Soc. 2004, 126, 7619.  

    73. [73]

      (73) Madina-Castillo, A. L.; Fernandez-Sanchez, J. F.; Klein, C.; Nazeeruddin, M. K.; Segura-Carretero, A.; Fernandez-Gutierrez, A.; Gr?tzel, M.; Spichiger-Keller, U. E. Analyst 2007, 132, 929.  

    74. [74]

      (73) Madina-Castillo, A. L.; Fernandez-Sanchez, J. F.; Klein, C.; Nazeeruddin, M. K.; Segura-Carretero, A.; Fernandez-Gutierrez, A.; Grätzel, M.; Spichiger-Keller, U. E. Analyst 2007, 132, 929.

    75. [75]

      (75) Mak, C. S. K.; Pentlehner, D.; Stich, M.;Wolfbeis, O. S.; Chan, W. K.; Yersin, H. Chem. Mater. 2009, 21, 2173.  

    76. [76]

      (76) Toro, M. M.; Fernandez-Sanchez, J. F.; Baranoff, E.; Nazeeruddin, M. K.; Gr?tzel, M.; Fernandez-Gutierrez, A. Talanta 2010, 82, 620.  

    77. [77]

      (77) Ohmichi, T.; Kawamoto, Y.;Wu, P.; Miyoshi, D.; Karimata, H.; Sugimoto, N. Biochemistry 2005, 44, 7125.  

    78. [78]

      (77) Ohmichi, T.; Kawamoto, Y.;Wu, P.; Miyoshi, D.; Karimata, H.; Sugimoto, N. Biochemistry 2005, 44, 7125.

    79. [79]

      (78) Whitaker, J. E.; Haughland, R. P.; Prendergast, F. G. Anal. Biochem. 1991, 194, 330.

    80. [80]

      (79) Lobnik, A.; Oehme, I.; Murkovic, I.;Wolfbeis, O. S. Anal. Chim. Acta 1998, 376, 159.

    81. [81]

      (81) Arm, K. J.; Leslie,W.;Williams, J. A. G. Inorg. Chim. Acta 2006, 359, 1222.  

    82. [82]

      (82) Aoki, S.; Matsuo, Y.; Ogura, S.; Ohwada, H.; Hisamatsu, Y.; Moromizato, S.; Shiro, M.; Kitamura, M. Inorg. Chem. 2011, 50, 806.  

    83. [83]

      (83) ldstein, D. C.; Cheng, Y. Y.; Schmidt, T.W.; Bhandbhade, M.; Thordarson, P. Dalton Trans. 2011, 40, 2053.  

    84. [84]

      (84) Han, M.; Chen, Y. M.;Wang, K. Z. New J. Chem. 2008, 32, 970.  

    85. [85]

      (85) Gill, M. R.; Garcia-Lara, G.; Foster, S. J.; Smythe, C.; Battaglia, G.; Thomas, L. A. Nature Chemistry 2009, 1, 662.  

    86. [86]

      (85) Gill, M. R.; Garcia-Lara, G.; Foster, S. J.; Smythe, C.; Battaglia, G.; Thomas, L. A. Nature Chemistry 2009, 1, 662.

    87. [87]

      (87) Liu, Z.; Bian, Z.; Bian, J.; Li, Z.; Nie, D.; Huang, C. Inorg. Chem. 2008, 47, 8025.  

    88. [88]

      (88) Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; ng, Q.; Kido, J. Adv. Mater. 2011, 23, 926.  

    89. [89]

      (88) Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; ng, Q.; Kido, J. Adv. Mater. 2011, 23, 926.

    90. [90]

      (89) Tang, X. Q.; Yu, J. S.; Li, L.;Wang, J.; Jiang, Y. D. Acta Phys. -Chim. Sin. 2008, 24, 1012. [唐晓庆, 于军胜, 李璐, 王军, 蒋亚东. 物理化学学报, 2008, 24, 1012.]

    91. [91]

      (91) McDaniel, N. D.; Coughlin, F. J.; Tinker, L. L. J. Am. Chem. Soc. 2008, 130, 210.  

    92. [92]

      (91) McDaniel, N. D.; Coughlin, F. J.; Tinker, L. L. J. Am. Chem. Soc. 2008, 130, 210.

    93. [93]

      (92) Nastasi, F.; Puntriero, F.; Campagna, S. Chem. Commun. 2007, 3556.

    94. [94]

      (94) Mydlad, M.; Bizzarri, C.; Hartmann, D.; Sarfert,W.; Schmid, G.; Cola, D. L. Adv. Funct. Mater. 2010, 20, 1812.  

    95. [95]

      (95) Lowry, M. S.; Bernhard, S. Chem. Eur. J. 2006, 12, 7970.  

    96. [96]

      (96) He, L.; Duan, L.; Qiao, J.;Wang, R.;Wei, P.;Wang, L.; Qiu, Y. Adv. Funct. Mater. 2008, 18, 2123.  

    97. [97]

      (96) He, L.; Duan, L.; Qiao, J.;Wang, R.;Wei, P.;Wang, L.; Qiu, Y. Adv. Funct. Mater. 2008, 18, 2123.

    98. [98]

      (97) Zapata, F.; Caballero, A.; Espionsa, A.; Tarraga, A.; Moina, P. Dalton Trans. 2009, 3900.

  • 加载中
    1. [1]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    2. [2]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    3. [3]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    4. [4]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    5. [5]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    8. [8]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    9. [9]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    10. [10]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    11. [11]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    12. [12]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    13. [13]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    16. [16]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    17. [17]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    20. [20]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(1532)
  • Abstract views(3208)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return