Citation: YU Jun, MAO Dong-Sen, GUO Qiang-Sheng, HAN Lu-Peng, LU Guan-Zhong. Effect of Calcination Temperature of Monodispersed SiO2 on the Performance of Rh-Based Catalysts for CO Hydrogenation[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 667-673. doi: 10.3866/PKU.WHXB201112221 shu

Effect of Calcination Temperature of Monodispersed SiO2 on the Performance of Rh-Based Catalysts for CO Hydrogenation

  • Received Date: 11 October 2011
    Available Online: 22 December 2011

    Fund Project: 上海市科委(08520513600) (08520513600) 上海市教委重点学科建设(J51503) (J51503)上海市优秀青年教师专项基金(yyy10083)资助项目 (yyy10083)

  • Based on a comparison of catalytic performances of Rh-Mn-Li/SiO2 catalysts, in which commercial SiO2 and monodispersed SiO2 synthesized by the Stöber method were used as the support, respectively, the effect of the calcination temperature of the synthesized SiO2 on the catalytic performance of Rh-Mn-Li/SiO2 for CO hydrogenation to C2 oxygenates was investigated. Fourier transform infrared spectroscopy, N2 adsorption-desorption, temperature-programmed reduction with hydrogen (H2-TPR), and temperature-programmed surface reaction (TPSR) were used to characterize the physico-chemical properties of the SiO2 supports and the corresponding catalysts. The results showed that the number of surface Si―OH groups on the SiO2 supports affected the dispersion of metal and the interaction between Rh and Mn. Large amount of surface Si―OH groups was favorable for the dispersion of Rh particles and CO adsorption, and enhanced the activity of the catalyst. An appropriate amount of Si ―OH groups can gain moderate interaction between the Rh and Mn. This interaction is conducive to achieve the right CO dissociation ability, which is favorable for the insertion of CO to CHx, and ultimately increases the selectivity of C2 oxygenates.
  • 加载中
    1. [1]

      (1) Ye, T. Q.; Zhang, Z. X.; Xu, Y.; Yan, S. Z.; Zhu, J. F.; Liu, Y.; Li, Q. X. Acta Phys. -Chim. Sin. 2011, 27, 1493. [叶同奇, 张朝霞, 徐勇, 颜世志, 朱九方, 刘勇, 李全新. 物理化学学报, 2011, 27, 1493.]

    2. [2]

      (2) Li, J.W.; Ding, Y. J.; Lin, R. H.; ng, L. F.; Song, X. G.; Chen,W. M.;Wang, T.; Luo, H. Y. Chin. J. Catal. 2010, 31, 365. [李经伟, 丁云杰, 林荣和, 龚磊峰, 宋宪根, 陈维苗, 王涛, 罗洪原. 催化学报, 2010, 31, 365.]

    3. [3]

      (3) Wang, Y.; Song, Z.; Ma, D.; Luo, H. Y.; Liang, D. B.; Bao, X. H. Chin. J. Catal. 1998, 19, 533. [王毅, 宋真, 马丁, 罗洪原, 梁东白, 包信和. 催化学报, 1998, 19, 533.]

    4. [4]

      (4) Lin, P. Z.; Liang, D. B.; Luo, H. Y.; Xu, C. H.; Zhou, H.W.; Huang, S. Y.; Lin, L.W. Appl. Catal. A 1995, 131, 207.  

    5. [5]

      (5) Wang, Y.; Luo, H. Y.; Liang, D. B.; Bao, X. H. J. Catal. 2000, 196, 46.  

    6. [6]

      (6) Yin, H. M.; Ding, Y. J.; Luo, H. Y.; Xiong, J. M.; He, D. P.; Wang, T.; Lin, L.W. Chin. J. Catal. 2002, 23, 352. [尹红梅, 丁云杰, 罗洪原, 熊建民, 何代平, 王涛, 林励吾. 催化学报, 2002, 23, 352.]

    7. [7]

      (7) Chuang, S. S. C.; Stevens, R.W., Jr.; Khatri, R. Top. Catal. 2005, 32, 225.  

    8. [8]

      (8) Chen,W. M.; Ding, Y. J.; Jiang, D. H.; Yan, L.;Wang, T.; Zhu, H. J.; Luo, H. Y. Chin. J. Catal. 2006, 27, 1059. [陈维苗, 丁云杰, 江大好, 严丽, 王涛, 朱何俊, 罗洪原. 催化学报, 2006, 27, 1059.]

    9. [9]

      (9) Gao, J.; Mo, X. H.; Chien, A. C.; Torres,W.; odwin, J. G., Jr. J. Catal. 2009, 262, 119.  

    10. [10]

      (10) Haider, M. A.; gate, M. R.; Davis, R. J. J. Catal. 2009, 261, 9.  

    11. [11]

      (11) Mo, X. H.; Gao, J.; Umnajkaseam, N.; odwin, J. G.,Jr. J. Catal. 2009, 267, 167.  

    12. [12]

      (12) Ma, H. T.;Wang, Y.; Bao, X. H. Acta Sci. Nat. Univ. Pekinensis 2001, 37, 210. [马洪涛, 王毅, 包信和. 北京大学学报(自然科学版), 2001, 37, 210.]

    13. [13]

      (13) Chen,W. M.; Ding, Y. J.; Jiang, D. H.; Pan, Z. D.; Luo, H. Y. Catal. Lett. 2005, 104, 177.  

    14. [14]

      (14) Jiang, D. H.; Ding, Y. J.; Pan, Z. D.; Chen,W. M.; Luo, H. Y. Catal. Lett. 2008, 121, 241.  

    15. [15]

      (15) Chen, J. G.; Xiang, H.W.; Sun, Y. H. Chin. J. Catal. 2000, 21, 169. [陈建刚, 相宏伟, 孙予罕. 催化学报, 2000, 21, 169.]

    16. [16]

      (16) Qu, Z. P.; Huang,W. X.; Zhou, S. T.; Zheng, H.; Liu, X. M.; Cheng, M. J.; Bao, X. H. J. Catal. 2005, 234, 33.  

    17. [17]

      (17) Luo, H. Y.; Yin, H. M.; Ding, Y. J.; Lin, L.W. Petroch. Technol. 2004, 33, 194. [罗洪原, 尹红梅, 丁云杰, 林励吾. 石油化工, 2004, 33, 194.]

    18. [18]

      (18) St?ber,W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62.  

    19. [19]

      (19) Mao, D. S.; Guo, Q. S.; Yu, J.; Han, L. P.; Lu, G. Z. Acta Phys. - Chim. Sin. 2011, 27, 2639. [毛东森, 郭强胜, 俞俊, 韩璐蓬, 卢冠忠. 物理化学学报, 2011, 27, 2639.]

    20. [20]

      (20) Szekeres, M.; Kamalin, O.; Grobet, P. G.; Schoonheydt, R. A.; Wostyn, K.; Clays, K.; Persoons, A.; Dkénáy, I. Colloids Surf. A: Physicochem. Eng. Aspects 2003, 227, 77.  

    21. [21]

      (21) Hsu,W. P.; Yu, R. C.; Matijevic, E. J. Colloid Interface Sci. 1993, 156, 56.  

    22. [22]

      (22) Zhang, L.; Xu, Y.; Huang, Z. Y. High Power Laser and Particle Beams 2005, 17, 669. [张磊, 徐耀, 黄祖鑫. 强激光与粒子束, 2005, 17, 669.]

    23. [23]

      (23) Yin, H. M.; Ding, Y. J.; Luo, H. Y.; Zhu, H. J.; He, D. P.; Xiong, J. M.; Lin, L.W. Appl. Catal. A 2003, 243, 155.  

    24. [24]

      (24) Mo, X. H.; Gao, J.; odwin, J. G., Jr. Catal. Today 2009, 147, 139.  

    25. [25]

      (25) Basu, P.; Panayotov, D.; Yates, J. T. J. Phys. Chem. 1987, 91, 3133.  

    26. [26]

      (26) Chen,W. M.; Ding, Y. J.; Jiang, D. H.; Jiao, G. P.; Zhu, H. J.; Pan, Z. D.; Luo, H. Y. Chin. J. Catal. 2006, 27, 999. [陈维苗, 丁云杰, 江大好, 焦桂萍, 朱何俊, 潘振栋, 罗洪原. 催化学报, 2006, 27, 999.]

    27. [27]

      (27) Jiang, D. H.; Ding, Y. J.; Pan, Z. D.; Li, X. M.; Jiao, G. P.; Li, J. W.; Chen,W. M.; Luo, H. Y. Appl. Catal. A 2007, 331, 70.  

    28. [28]

      (28) Ojeda, M.; Granados, M. L.; Rojas, S.; Terreros, P.; Garcia-Garcia, F. J.; Fierro, J. L. G. Appl. Catal. A 2004, 261, 47.  

    29. [29]

      (29) Luo, H. Y.; Xie, S. B.; Lin, L.W.; Liang, D. B. Chin. J. Catal. 1995, 16, 136. [罗洪原, 谢水波, 林励吾, 梁东白. 催化学报, 1995, 16, 136.]

    30. [30]

      (30) Chen,W. M.; Ding, Y. J.; Luo, H. Y.; Yan, L.;Wang, T.; Pan, Z. D.; Zhu, H. J. Chin. J. Appl. Chem. 2005, 22, 470. [陈维苗, 丁云杰, 罗洪原, 严丽, 王涛, 潘振栋, 朱何俊. 应用化学, 2005, 22, 470.]

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    4. [4]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    7. [7]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    8. [8]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    9. [9]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    10. [10]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    11. [11]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    12. [12]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    15. [15]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    17. [17]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    18. [18]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

Metrics
  • PDF Downloads(687)
  • Abstract views(2000)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return