Citation: LIU Kong-Hua, LIU Lan, GAO Hong, LUO Yuan-Fang, JIA De-Min. In situ Preparation of Epoxy-Based Conductive Nanocomposites Containing Nanosilver-Decorated Carbon Nanotubes[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 711-719. doi: 10.3866/PKU.WHXB201112213 shu

In situ Preparation of Epoxy-Based Conductive Nanocomposites Containing Nanosilver-Decorated Carbon Nanotubes

  • Received Date: 31 October 2011
    Available Online: 21 December 2011

    Fund Project: 国家自然科学基金(50608034, 50873036) (50608034, 50873036) 广东高校科技创新重点项目(CXZD1106) (CXZD1106)华南理工大学中央高校基本科研业务费(2012ZZ0006)资助项目 (2012ZZ0006)

  • Nanosilver-decorated carbon nanotubes (CNTs) were prepared by introducing CNTs and silver acetate into an epoxy-imidazole curing system and simultaneous in situ thermal degradation of an Ag-imidazole complex. Differential scanning calorimetry (DSC) results indicated that modified CNTs played a certain role in promoting the curing of the epoxy. The structure of the silver acetate-imidazole complex was characterized by X-ray diffraction (XRD). The size of the nano-silver particles resulting from degradation of the Ag-imidzole complex was between 21 and 24 nm, and between 11 and 13 nm when the Ag-imidzole complex was added to the epoxy matrix. When silver flakes with a mass fraction of 80% was added to the composites, the volume resistivity of the nanosilver-decorated CNTs/epoxy conductive composite was as low as 9×10-5 Ω·cm. The optimum conductivity and shear strength were achieved when the ratio of nanosilver and CNTs was 80:20 (mass ratio). Scanning electron microscopy (SEM) revealed the structural morphology of the composite.
  • 加载中
    1. [1]

      (1) Li, Y.; Yim, M. J.; Moon, K. S.;Wong, C. P. IEEE Transactions on Advanced Packaging 2009, 32 (1), 123.

    2. [2]

      (2) Li, Y.;Wong, C. P. Materials Science & Engineering R-Reports 2006, 51, 1.  

    3. [3]

      (3) Chen, D. P.; Qiao, X. L.; Qiu, X. L. J. Mater. Sci. 2009, 44, 1076.  

    4. [4]

      (4) Li, Y.; Moon, K. S.;Wong, C. P. Science 2005, 308, 1419.  

    5. [5]

      (5) Jiang, H.; Moon, K.; Li, Y.;Wong, C. P. Chem. Mater. 2006, 18, 2969.  

    6. [6]

      (6) Oh, Y.; Chun, K. Y.; Lee, E.; Kim, Y. J.; Baik, S. J. Mater. Chem. 2010, 20, 3579.  

    7. [7]

      (7) Ruschau, G. R.; Yoshikawa, S.; Newnham, R. E. J. Appl. Phys. 1992, 72, 953.  

    8. [8]

      (8) Guan, Y.; Chen, X.; Li, F. Q.; Gao, H. International Journal of Adhesion & Adhesives 2010, 30, 80.  

    9. [9]

      (9) Sivaramakrishnan, S.; Chia, P. J.; Yeo, Y. C.; Chua, L. L.; Ho, P. K. H. Nat. Mater. 2007, 6, 149.  

    10. [10]

      (10) Chou, K. S.; Huang, K. C.; Lee, H. H. Nanotechnology 2005, 16, 779.  

    11. [11]

      (11) Duan, J. Y.; Zhang, Q. X.;Wang, Y. L.; Guan, J. G. Acta Phys. -Chim. Sin. 2009, 25, 1405. [段君元, 章桥新, 王一龙, 官建国. 物理化学学报, 2009, 25, 1405.]

    12. [12]

      (12) Sangermano, M.; Yagci, Y.; Rizza, G. Macromolecules 2007, 40, 8827.  

    13. [13]

      (13) Yan, J. M.; Tao, H.W.; Zeng, M. L.; Tao, J.; Zhang, S. H.; Yan, Z. Y.;Wang,W.;Wang, J. Q. Chinese Journal of Catalysis 2009, 30, 856. [闫江梅, 陶辉旺, 曾牡玲, 陶军, 张世鸿, 闫智英, 王伟, 王家强. 催化学报, 2009, 30, 856.]  

    14. [14]

      (14) Hsu, S. L. C.;Wu, R. T. Mater. Lett. 2007, 61, 3719.  

    15. [15]

      (15) Luo, C. C.; Zhang, Y. H.; Zeng, X.W.; Zeng, Y.W.;Wang, Y. G. J. Colloid Interface Sci. 2005, 288, 444.  

    16. [16]

      (16) Lei, Z. L.; Fan, Y. H. Acta Phys. -Chim. Sin. 2006, 22, 1021. [雷忠利, 范友华. 物理化学学报, 2006, 22, 1021.]

    17. [17]

      (17) Lai,W. Z.; Zhao,W.; Yang, R.; Li, X. G. Acta Phys. -Chim. Sin. 2010, 26, 1177. [赖文忠, 赵威, 杨容, 李星国. 物理化学学报, 2010, 26, 1177.]

    18. [18]

      (18) Iijima, S. Nature 1991, 354, 56.  

    19. [19]

      (19) Wong, E.W.; Sheehan, P. E.; Lieber, C. M. Science 1997, 277, 1971.  

    20. [20]

      (20) Gao, H.; Liu, L.; Luo, Y. F.; Jia, D. M. Materials Letters 2011, 65, 3529.  

    21. [21]

      (21) Gao, H.; Liu, L.; Liu, K. H.; Luo, Y. F.; Jia, D. M.; Lu, J. S. Journal of Materials Science: Materials in Electronics doi: 10.1007/s 10854-011-0388-8.

    22. [22]

      (22) Gao, H.; Liu, L.; Luo, Y. F.; Jia, D. M.;Wang, F.; Lu, J. S. Journal of Macromolecular Science, Part B: Physics 2011, 50, 1939.

    23. [23]

      (23) Liu, L.; Gao, H.; Luo, Y. F.; Jia, D. M. In situ synthesis of nano-silver/epoxy conductive adhesive. CN Patent 101781541A, 2010-07-21. [刘岚, 高宏, 罗远芳, 贾德民. 一种纳米银/环氧导电胶的原位制备方法: 中国, CN101781541A[P]. 2010-07-21.]

    24. [24]

      (24) Liu, L.; Liu, K. H.; Jia, D. M.; Luo, Y. F.; Gao, H. Synthesis of graphene/nano-silver/epoxy conductive adhesive. CN Patent 102153976A, 2011-08-17. [刘岚, 刘孔华, 贾德民, 罗远芳, 高宏. 一种石墨烯/纳米银环氧导电胶的制备方法: 中国, CN102153976A[P]. 2011-08-17.]

    25. [25]

      (25) Zhou, T. L.;Wang, X.; Liu, X. H.; Xiong, D. S. Carbon 2009, 47, 1112.  

    26. [26]

      (26) Wang, A. Z.; Chen, L.; Hou,W.; Lan, Y. X.; Lu, M. G. Polym. Mater. Sci. Eng. 2007, 23 (2), 157.

    27. [27]

      (27) Lee, C. K.; Hsu, K. M.; Tsai, C. H.; Lai, C. K.; Lin, I. J. B. Dalton Trans. 2004, 4 (8), 1120.

    28. [28]

      (28) Lu, D. Q.; Tong, Q. K.;Wong, C. P. IEEE Transactions on Components and Packaging Technologies 1999, 22 (3), 365.

    29. [29]

      (29) Brown, J.; Hamerton, I.; Howlin, B. J. Journal of Applied Polymer Science 2000, 75 (2), 201.

    30. [30]

      (30) Oh, Y.; Suh, D.; Kim, Y.; Lee, E.; Mok, J. S.; Choi, J.; Baik, S. Nanotechnology 2008, 19, 495602.  

    31. [31]

      (31) Pothukuchi, S.; Li, Y.;Wong, C. P. Journal of Applied Polymer Science 2004, 93 (4), 1531.

    32. [32]

      (32) Kirkpatrick, S. Rev. Mod. Phys. 1973, 45, 574.  

  • 加载中
    1. [1]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    2. [2]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    5. [5]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    8. [8]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    9. [9]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    10. [10]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    11. [11]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    12. [12]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    15. [15]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    20. [20]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

Metrics
  • PDF Downloads(843)
  • Abstract views(2406)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return