Citation: WANG Qing, CHU Yan-Qiu, ZHANG Kai, DAI Xin-Hua, FANG Xiang, DING Chuan-Fan. Effect of Alkali Metal Ions on the Dissociation of Glycine Pentapeptide in the Gas Phase[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 971-977. doi: 10.3866/PKU.WHXB201112201 shu

Effect of Alkali Metal Ions on the Dissociation of Glycine Pentapeptide in the Gas Phase

  • Received Date: 3 November 2011
    Available Online: 20 December 2011

    Fund Project: 国家科技支撑计划(2009BAK60B03) (2009BAK60B03)国家重大科学仪器设备开发专项(2011YQ09005)资助项目 (2011YQ09005)

  • To obtain more structural information of polypeptides, glycine pentapeptide (simplified as GGGGG or G5) was chosen as a model to investigate the impact of alkali metal ions on the dissociation of GGGGG in the gas phase. Stoichiometric G5 and alkali metal salt solutions, including Li + , Na+ , K+ , Rb+ , were mixed, respectively, and then the solutions were left to stand at room temperature for 10 h to reach equilibrium. The mass spectrometric results indicated that the alkali metal ions and G5 could form 1:1 or 2: 1 non-covalent complexes in solution. The energy of the collision induced dissociation (CID) was 25 eV. The gas phase CID results demonstrate that in the 1:1 complexes, the extent of fragmentation decreases according to the order: Li+, Na+, K+, Rb+. Moreover, the unusual c, z ions were observed in the Rb+ complex. In the 2:1 non-covalent complexes, the extent of fragmentation increases according to the order: Li+ , Na+ , K+, Rb+. The gas phase dissociation of the Na+, K+, Rb+ 2:1 complexes are easier than their 1:1 complexes. Except for Li + , the activation abilities of the double metal ions to G5 are stronger than that of the single metal ion to G5, which can induce more dissection sites in the glycine pentapeptide and lead to the formation of more kinds of fragment ions.
  • 加载中
    1. [1]

      (1) Hughes, M. N. The Inorganic Chemistry of Biological Processes, 2nd ed;Wiley: New York, 1972; pp 89-124, 257-295.

    2. [2]

      (2) Gress, R. P.; Gross, M. L. J. Am. Chem. Soc. 1990, 112, 5098.  

    3. [3]

      (3) Jia,W. T.; Lu, H. J.; Yun, D.; Yang, P. Y. Acta Chim. Sin. 2008, 65 (3), 177. [贾韦韬, 陆豪杰, 贠栋, 杨芃原. 化学学报, 2008, 65 (3), 177.]

    4. [4]

      (4) Chu, Y. Q.; Dai, X. H.; Jiang, D.; Fang, X.; Ding, C. F. Rapid Commun. Mass Spectrom. 2010, 24, 2255.  

    5. [5]

      (5) Dai, X. H.; Chu, Y. Q.; Jiang, D.; He, X. D.; Fang, X.; Ding, C. F. Chin. J. Anal. Chem. 2010, 38 (12), 1747. [戴新华, 储艳秋, 姜丹, 何小丹, 方向, 丁传凡. 分析化学, 2010, 38 (12), 1747.]

    6. [6]

      (6) Li, P.; Liu, B. Y.;Wang, H. L.; Li, A. L.;Wang, H. X. Chin. J. Anal. Chem. 2007, 35 (1), 87. [李萍, 刘炳玉, 王鸿丽, 李爱玲, 王红霞. 分析化学, 2007, 35 (1), 87.]

    7. [7]

      (7) Yu, C. T.; Guo, Y. L. Acta Chim. Sin. 2001, 59 (4), 615. [余翀天, 郭寅龙. 化学学报, 2001, 59 (4), 615.]

    8. [8]

      (8) Biemann, K. Methods Enzymol. 1990, 193, 455.  

    9. [9]

      (9) Biemann, K. Annu. Rev. Biochem. 1992, 61, 977.  

    10. [10]

      (10) Papayannopoulos, I. A. Mass Spectrom. Rev. 1995, 14, 49.  

    11. [11]

      (11) Dai, Z. Y.; Chu, Y. Q.;Wu, B.;Wu, L.; Ding, C. F. Acta Pharmcol. Sin. 2008, 29 (6), 759.

    12. [12]

      (12) He, X. D.; Jiang, D.; Chen, C.; Chu, Y. Q.; Ding, C. F. Acta Phys. -Chim. Sin. 2010, 26 (10), 2604. [何小丹, 姜丹, 陈琛, 储艳秋, 丁传凡. 物理化学学报, 2010, 26 (10), 2604.]

    13. [13]

      (13) Zhang, E.; Zu, L. L.; Fang,W. H.; Huang, L. Y.; He, D. C. Chem. J. Chin. Univ. 2008, 29 (6), 1185. [张娥, 祖莉莉, 方维海, 黄凌云, 何大澄. 高等学校化学学报, 2008, 29 (6), 1185.]

    14. [14]

      (14) Nair, H.; Somogyi, A.;Wysocki, V. H. J. Mass Spectrom. 1996, 31, 1141.  

    15. [15]

      (15) Dongre, A. R.; Jones, J. L.; Somogyi, A.;Wysocki, V. H. J. Am. Chem. Soc. 1996, 118, 8365.  

    16. [16]

      (16) Wysocki, V. H.; Tsaprailis, G.; Smith, L. L.; Breci, L. A. J. Mass Spectrom. 2000, 35, 1399.  

    17. [17]

      (17) Huang, Y.; Triscari, J. M.; Pasa-Tolic, L.; Anderson, G. A.; Lipton, M. S.; Smith, R. D.;Wysocki, V. H. J. Am. Chem. Soc. 2004, 126, 3034.  

    18. [18]

      (18) Tsaprailis, G.; Nair, H.; Zhong,W.; Kuppannan, K.; Futrell, J. H.;Wysocki, V. H. Anal. Chem. 2004, 76, 2083.  

    19. [19]

      (19) Mallis, L.; Russell, M. D. H. Anal. Chem. 1988, 60, 2299.  

    20. [20]

      (20) Leary, J. A.; Zhou, Z. G.; Ogden, S. A.;Williams, T. D. J. Am. Soc. Mass Spectrom. 1990, 1, 473.  

    21. [21]

      (21) Teesch, L. M.; Orlando, R. C.; Adams, J. J. Am. Chem. Soc. 1991, 113, 3668.  

    22. [22]

      (22) Wang, J. Y.; Siu, K.W. M.; Guevremont, R. J. Mass Spectrom. 1996, 31, 159.  

    23. [23]

      (23) Hu, P. F.; Gross, M. L. J. Am. Chem. Soc. 1993, 115, 8821.  

    24. [24]

      (24) Farrugia, J. M.; O'Hair, A. R. J. Int. J. Mass Spectrom. 2003, 222, 229.  

    25. [25]

      (25) Pingitore, F.;Wesdemiotis, C. Anal. Chem. 2005, 77, 1796.  

    26. [26]

      (26) Grese, R. P.; Cerny, R. L.; Gross, M. L. J. Am. Chem. Soc. 1989, 111, 2835.  

  • 加载中
    1. [1]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    2. [2]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    3. [3]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    4. [4]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    5. [5]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    6. [6]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    7. [7]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    8. [8]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    9. [9]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    10. [10]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    11. [11]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    14. [14]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    15. [15]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    16. [16]

      Yan Liu Xiaojun Han Ping Xu Guoxu Zhang Yu Wang Zhicheng Zhang Dianpeng Qi . “Five Measures” Based Science and Education Integration Experimental Teaching Mode to Promote the Construction of “Specialized Experiment” Curriculum. University Chemistry, 2024, 39(10): 299-307. doi: 10.12461/PKU.DXHX202405002

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    19. [19]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    20. [20]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

Metrics
  • PDF Downloads(749)
  • Abstract views(2075)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return