Citation: WANG Qing, CHU Yan-Qiu, ZHANG Kai, DAI Xin-Hua, FANG Xiang, DING Chuan-Fan. Effect of Alkali Metal Ions on the Dissociation of Glycine Pentapeptide in the Gas Phase[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 971-977. doi: 10.3866/PKU.WHXB201112201
-
To obtain more structural information of polypeptides, glycine pentapeptide (simplified as GGGGG or G5) was chosen as a model to investigate the impact of alkali metal ions on the dissociation of GGGGG in the gas phase. Stoichiometric G5 and alkali metal salt solutions, including Li + , Na+ , K+ , Rb+ , were mixed, respectively, and then the solutions were left to stand at room temperature for 10 h to reach equilibrium. The mass spectrometric results indicated that the alkali metal ions and G5 could form 1:1 or 2: 1 non-covalent complexes in solution. The energy of the collision induced dissociation (CID) was 25 eV. The gas phase CID results demonstrate that in the 1:1 complexes, the extent of fragmentation decreases according to the order: Li+, Na+, K+, Rb+. Moreover, the unusual c, z ions were observed in the Rb+ complex. In the 2:1 non-covalent complexes, the extent of fragmentation increases according to the order: Li+ , Na+ , K+, Rb+. The gas phase dissociation of the Na+, K+, Rb+ 2:1 complexes are easier than their 1:1 complexes. Except for Li + , the activation abilities of the double metal ions to G5 are stronger than that of the single metal ion to G5, which can induce more dissection sites in the glycine pentapeptide and lead to the formation of more kinds of fragment ions.
-
-
[1]
(1) Hughes, M. N. The Inorganic Chemistry of Biological Processes, 2nd ed;Wiley: New York, 1972; pp 89-124, 257-295.
-
[2]
(2) Gress, R. P.; Gross, M. L. J. Am. Chem. Soc. 1990, 112, 5098.
-
[3]
(3) Jia,W. T.; Lu, H. J.; Yun, D.; Yang, P. Y. Acta Chim. Sin. 2008, 65 (3), 177. [贾韦韬, 陆豪杰, 贠栋, 杨芃原. 化学学报, 2008, 65 (3), 177.]
-
[4]
(4) Chu, Y. Q.; Dai, X. H.; Jiang, D.; Fang, X.; Ding, C. F. Rapid Commun. Mass Spectrom. 2010, 24, 2255.
-
[5]
(5) Dai, X. H.; Chu, Y. Q.; Jiang, D.; He, X. D.; Fang, X.; Ding, C. F. Chin. J. Anal. Chem. 2010, 38 (12), 1747. [戴新华, 储艳秋, 姜丹, 何小丹, 方向, 丁传凡. 分析化学, 2010, 38 (12), 1747.]
-
[6]
(6) Li, P.; Liu, B. Y.;Wang, H. L.; Li, A. L.;Wang, H. X. Chin. J. Anal. Chem. 2007, 35 (1), 87. [李萍, 刘炳玉, 王鸿丽, 李爱玲, 王红霞. 分析化学, 2007, 35 (1), 87.]
-
[7]
(7) Yu, C. T.; Guo, Y. L. Acta Chim. Sin. 2001, 59 (4), 615. [余翀天, 郭寅龙. 化学学报, 2001, 59 (4), 615.]
-
[8]
(8) Biemann, K. Methods Enzymol. 1990, 193, 455.
- [9]
-
[10]
(10) Papayannopoulos, I. A. Mass Spectrom. Rev. 1995, 14, 49.
-
[11]
(11) Dai, Z. Y.; Chu, Y. Q.;Wu, B.;Wu, L.; Ding, C. F. Acta Pharmcol. Sin. 2008, 29 (6), 759.
-
[12]
(12) He, X. D.; Jiang, D.; Chen, C.; Chu, Y. Q.; Ding, C. F. Acta Phys. -Chim. Sin. 2010, 26 (10), 2604. [何小丹, 姜丹, 陈琛, 储艳秋, 丁传凡. 物理化学学报, 2010, 26 (10), 2604.]
-
[13]
(13) Zhang, E.; Zu, L. L.; Fang,W. H.; Huang, L. Y.; He, D. C. Chem. J. Chin. Univ. 2008, 29 (6), 1185. [张娥, 祖莉莉, 方维海, 黄凌云, 何大澄. 高等学校化学学报, 2008, 29 (6), 1185.]
-
[14]
(14) Nair, H.; Somogyi, A.;Wysocki, V. H. J. Mass Spectrom. 1996, 31, 1141.
-
[15]
(15) Dongre, A. R.; Jones, J. L.; Somogyi, A.;Wysocki, V. H. J. Am. Chem. Soc. 1996, 118, 8365.
-
[16]
(16) Wysocki, V. H.; Tsaprailis, G.; Smith, L. L.; Breci, L. A. J. Mass Spectrom. 2000, 35, 1399.
-
[17]
(17) Huang, Y.; Triscari, J. M.; Pasa-Tolic, L.; Anderson, G. A.; Lipton, M. S.; Smith, R. D.;Wysocki, V. H. J. Am. Chem. Soc. 2004, 126, 3034.
-
[18]
(18) Tsaprailis, G.; Nair, H.; Zhong,W.; Kuppannan, K.; Futrell, J. H.;Wysocki, V. H. Anal. Chem. 2004, 76, 2083.
-
[19]
(19) Mallis, L.; Russell, M. D. H. Anal. Chem. 1988, 60, 2299.
-
[20]
(20) Leary, J. A.; Zhou, Z. G.; Ogden, S. A.;Williams, T. D. J. Am. Soc. Mass Spectrom. 1990, 1, 473.
-
[21]
(21) Teesch, L. M.; Orlando, R. C.; Adams, J. J. Am. Chem. Soc. 1991, 113, 3668.
-
[22]
(22) Wang, J. Y.; Siu, K.W. M.; Guevremont, R. J. Mass Spectrom. 1996, 31, 159.
-
[23]
(23) Hu, P. F.; Gross, M. L. J. Am. Chem. Soc. 1993, 115, 8821.
-
[24]
(24) Farrugia, J. M.; O'Hair, A. R. J. Int. J. Mass Spectrom. 2003, 222, 229.
-
[25]
(25) Pingitore, F.;Wesdemiotis, C. Anal. Chem. 2005, 77, 1796.
-
[26]
(26) Grese, R. P.; Cerny, R. L.; Gross, M. L. J. Am. Chem. Soc. 1989, 111, 2835.
-
[1]
-
-
[1]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[2]
Wei Shao , Wanqun Zhang , Pingping Zhu , Wanqun Hu , Qiang Zhou , Weiwei Li , Kaiping Yang , Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048
-
[3]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[4]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[5]
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
-
[6]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[7]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[8]
Zuozhong Liang , Lingling Wei , Yiwen Cao , Yunhan Wei , Haimei Shi , Haoquan Zheng , Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103
-
[9]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[10]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[11]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[12]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[13]
Yan Liu , Xiaojun Han , Ping Xu , Guoxu Zhang , Yu Wang , Zhicheng Zhang , Dianpeng Qi . “Five Measures” Based Science and Education Integration Experimental Teaching Mode to Promote the Construction of “Specialized Experiment” Curriculum. University Chemistry, 2024, 39(10): 299-307. doi: 10.12461/PKU.DXHX202405002
-
[14]
Li Zhou , Dongyan Tang , Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037
-
[15]
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
-
[16]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[17]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[18]
Jie Li , Huida Qian , Deyang Pan , Wenjing Wang , Daliang Zhu , Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076
-
[19]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[20]
Gaoyan Chen , Chaoyue Wang , Juanjuan Gao , Junke Wang , Yingxiao Zong , Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011
-
[1]
Metrics
- PDF Downloads(749)
- Abstract views(2023)
- HTML views(9)