Citation: LI Hai-Lan, JIA Yu-Xiang, HU Yang-Dong. Molecular Dynamics Simulation of the Desalination of Sea Water by a Forward Osmosis Membrane Containing Charged Carbon Nanotubes[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 573-577. doi: 10.3866/PKU.WHXB201112191 shu

Molecular Dynamics Simulation of the Desalination of Sea Water by a Forward Osmosis Membrane Containing Charged Carbon Nanotubes

  • Received Date: 31 August 2011
    Available Online: 19 December 2011

    Fund Project: 国家自然科学基金(20806076) (20806076)山东省自然科学基金(ZR2011EMQ004)资助项目 (ZR2011EMQ004)

  • Spurred by traditional membrane science in which a charged membrane can improve separation efficiency, a forward osmosis membrane containing charged“armchair-type”(8, 8) carbon nanotubes (CNTs) was developed and the transport phenomena of water molecules in this membrane were investigated. In the simulation, 0.5 mol·L-1 NaCl was chosen to mimic seawater, and 1 mol·L-1 MgCl2 was chosen as the draw solution. The effects of electric charge on the density distribution, diffusion of water molecules, and the water flux of the membrane were investigated in detail. Modifying the CNT membrane by charge significantly changes the density distribution, diffusion, and flux of water molecules. The membrane containing CNTs modified by -0.3e can achieve the highest water flux of those developed.
  • 加载中
    1. [1]

      (1) Van der Bruggen, B.; Lejon, L.; Vandecasteele, C. Environ. Sci. Technol. 2003, 37, 3733.  

    2. [2]

      (2) Miller, J. E.; Evans, L. R. Sandia National Laboratories Report, 2006.

    3. [3]

      (3) McCutcheon, J. R.; McGinnis, R. L.; Elimelech, M. J. Membr. Sci. 2006, 278, 114.  

    4. [4]

      (4) Mi, B.; Elimelech, M. J. Membr. Sci. 2008, 320, 292.  

    5. [5]

      (5) Gao, C. J.; Zheng, G. J.;Wang, M.;Wang, D.; Gao, X. L.; Zhou, Y. Technol. Water Treat. 2008, 34 (2), 1. [高从堦, 郑根江, 汪锰, 王铎, 高学理, 周勇. 水处理技术, 2008, 34 (2), 1]

    6. [6]

      (6) Cath, T. Y.; rmly, S.; Beaudry, E. G.; Adams, V. D.; Childress, A. E. J. Membr. Sci. 2005, 257, 85.  

    7. [7]

      (7) Cath, T. Y.; Childress, A. E.; Elimelech, M. J. Membr. Sci. 2006, 281, 70.  

    8. [8]

      (8) Iijima, S. J. Chem. Phys. 1991, 79, 926.

    9. [9]

      (9) Patel-Predd, P. Environ. Sci. Technol. 2006, 40 (11), 3454.

    10. [10]

      (10) Corry, B. J. Phys. Chem. B 2008, 112, 1427.  

    11. [11]

      (11) Wongkoblap, A.; Do, D. D.;Wang, K. J. Colloid Interface Sci. 2009, 331, 65.  

    12. [12]

      (12) Alessio, A.; Stavros, K. Chem. Eng. Sci. 2008, 63, 2047.  

    13. [13]

      (13) Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414, 188.  

    14. [14]

      (14) Zhu, F. Q.; Schulten, K. Biophys. J. 2003, 85, 236.  

    15. [15]

      (15) Kalra, A.; Garde, S.; Hummer, G. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 10175.  

    16. [16]

      (16) Della , C.; Naor, M. M.; Hummer, G. Phys. Rev. Lett. 2003, 90, 105902.  

    17. [17]

      (17) Wang, J.; Zhu, Y.; Zhou, J.; Lu, X. H. Acta Chimica Sinica 2003, 61 (12), 1891. [王俊, 朱宇, 周健, 陆小华. 化学学报, 2003, 61 (12), 1891.]

    18. [18]

      (18) Shao, Q.; Huang, L. L.; Lu, X. H.; Lü, L. H.; Zhu, Y. D.; Shen, W. F. Acta Chimica Sinica 2007, 65 (20), 2217. [邵庆, 黄亮亮, 陆小华, 吕玲红, 朱育丹, 沈文枫. 化学学报, 2007, 65 (20), 2217.]

    19. [19]

      (19) Peter, C.; Hummer, G. Biophys. J. 2005, 89, 2222.  

    20. [20]

      (20) Kobayashi, T.; Nagai, T.;Wang, H.; Fujii, N. J. Membr. Sci. 1996, 112, 219.  

    21. [21]

      (21) Wang, M.;Wu, L. Y.; Mo, J. X.; Gao, C. J. J. Membr. Sci. 2006, 274, 200.  

    22. [22]

      (22) Wang, M.;Wu, L. Y.; Zheng, X. C.; Mo, J. X.; Gao, C. J. J. Colloid Interface Sci. 2006, 300, 286.  

    23. [23]

      (23) Jia, Y. X.; Li, H. L.;Wang, M.; Hu, Y. D. Sep. Purif. Technol. 2010, 75, 55.  

    24. [24]

      (24) Jia, Y. X.; Li, Y.; Hu, Y. D. Acta Phys. -Chim. Sin. 2011, 27, 228. [贾玉香, 李燕, 胡仰栋. 物理化学学报, 2011, 27, 228.]

    25. [25]

      (25) Li, Y.; Jia, Y. X.; Hu, Y. D. Journal of Harbin Engineering University 2011, 32, 242. [李燕, 贾玉香, 胡仰栋. 哈尔滨工程大学学报, 2011, 32, 242.]

    26. [26]

      (26) Alexiadis, A.; Kassinos, S. Chem. Rev. 2008, 108, 5014.  

    27. [27]

      (27) Striolo, A. Nanotechnology 2007, 18 (47), 475704.

    28. [28]

      (28) Meng, L. Y.; Li, Q. K.; Shuai, Z. G. Sci. China Ser. B-Chem. 2008, 38 (12), 1063. [孟令一, 李启楷, 帅志刚. 中国科学B 辑: 化学, 2008, 38 (12), 1063.]

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    4. [4]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    18. [18]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    19. [19]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    20. [20]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

Metrics
  • PDF Downloads(1262)
  • Abstract views(3771)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return