Citation: WANG Ya-Ping, ZHAO Xu-Hui, LU Xiang-Yu, ZUO Yu. Corrosion Protection of Ceria Particles in Mg-Rich Primer on AZ91D Magnesium Alloy[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 407-413. doi: 10.3866/PKU.WHXB201112164 shu

Corrosion Protection of Ceria Particles in Mg-Rich Primer on AZ91D Magnesium Alloy

  • Received Date: 4 November 2011
    Available Online: 16 December 2011

    Fund Project: 教育部科学技术重点项目(108129)资助 (108129)

  • The effect of ceria particles on the corrosion resistance of Mg-rich primer on AZ91D magnesium alloy was studied using the Machu test, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The results show that addition of a small amount of cerium oxide (0.1% , mass fraction) had no effect on the corrosion resistance of the coating, and the addition of excessive particles (3%) reduces the corrosion resistance of the coating. However, addition of 0.5% ceria particles to the Mg-rich primer can significantly improve the protection performance of the primer on AZ91D magnesium alloy. The coating resistance increases and coating capacitance decreases after the addition of ceria particles. Although the addition of ceria does not change the protection mechanisms of the magnesium-rich primer on AZ91D magnesium alloy, the electrochemical activity of the magnesium particles in the primer decreases and the service life of the Mg-rich primer is obviously prolonged. The ceria particles also result in an improved barrier effect. In addition, the presence of ceria particles on the AZ91D alloy surface can increase the corrosion potential and decrease the current density of the alloy, which is beneficial for cathode protection of the pure magnesium particles on the alloy substrate.
  • 加载中
    1. [1]

      (1) Mordike, B. L.; Ebert, T. Mater. Sci. Eng. A 2001, 302, 37.  

    2. [2]

      (2) Gray, J. E.; Luan, B. J. Alloy. Compd. 2002, 336, 88.  

    3. [3]

      (3) Bierwagen, G. P. Prog. Org. Coat. 1996, 28, 43.  

    4. [4]

      (4) Zhang, J. Q.; Mansfeld, F. Corros. Sci. Prot. Technol. 1989, 1, 15. [张鉴清, Mansfeld, F. 腐蚀科学与防护技术, 1989, 1, 15.]

    5. [5]

      (5) Zhang, J. T. Electrochemical Investigation onWater Transport Behavior of Organic Coating and Degradation Mechanism of Coated-Metals. Ph. D. Dissertation, Zhejing University, Zhejiang, 2005. [张金涛. 有机涂层中水传输与涂层金属失效机制的电化学研究[D]. 浙江: 浙江大学, 2005.]

    6. [6]

      (6) Marchebois, H.; Joiret, S.; Savall, C.; Bernard, J.; Touzain, S. Surf. Coat. Technol. 2002, 157, 151.  

    7. [7]

      (7) Marchebois, H.; Savall, C.; Bernard, J.; Touzain, S. Electrochim. Acta 2004, 49, 2945.  

    8. [8]

      (8) Bierwagen, G.; Brown, R.; Battocchi, D.; Hayes, S. Prog. Org. Coat. 2010, 67, 195.  

    9. [9]

      (9) Battocchi, D.; Simoes, A. M.; Tallman, D. E.; Bierwagen, G. P. Corrosion Sci. 2006, 48, 1292.  

    10. [10]

      (10) Simoes, A. M.; Battocchi, D.; Tallman, D. E.; Bierwagen, G. P. Corrosion Sci. 2007, 49, 3838.  

    11. [11]

      (11) Yu, B. L.; Uan, J. Y. Scripta Materialia 2006, 54, 1253.  

    12. [12]

      (12) Lu, X. Y.; Zuo, Y.; Zhao, X. H.; Tang, Y. M.; Feng, X. G. Corrosion Sci. 2011, 53, 153.  

    13. [13]

      (13) Montemor, M. F.; Pinto, R.; Ferreira, M. G. S. Electrochim. Acta 2009, 54, 5179.  

    14. [14]

      (14) Schem, M.; Schmidt, T.; Gerwann, J.;Wittmar, M.; Veith, M.; Thompson, G. E.; Molchan, I. S.; Hashimoto, T.; Skeldon, P.; Phani, A. R.; Santucci, S.; Zheludkevich, M. L. Corrosion Sci. 2009, 51, 2304.  

    15. [15]

      (15) Hu, J. M.; Zhang, J. Q.; Xie, D. M.; Cao, C. N. Acta Phys. - Chim. Sin. 2003, 19, 144. [胡吉明, 张鉴清, 谢德明, 曹楚南. 物理化学学报, 2003, 19, 144.]

    16. [16]

      (16) Penttinen, I. M.; Korhonen, A. S.; Harju, E.; Turkia, M. A.; Forsén, O.; Ristolainen, E. O. Surf. Coat. Technol. 1992, 50, 161.  

    17. [17]

      (17) Celis, J. P.; Drees, D.; Maesen, E.; Roos, J. R. Thin Solid Films 1993, 224, 58.  

    18. [18]

      (18) Notter, I. M.; Gabe, D. R. Corrosion Sci. 1993, 34, 851.  

    19. [19]

      (19) Montemor, M. F.; Ferreira, M. G. S. Prog. Org. Coat. 2008, 63, 330.  

    20. [20]

      (20) Montemor, M. F.; Ferreira, M. G. S. Electrochim. Acta 2007, 52, 6976.  

    21. [21]

      (21) Yu, H. C.; Chen, B. Z.; Shi, X. C.; Li, B.;Wu, H. Y. Acta Phys. - Chim. Sin. 2008, 24, 1465. [余会成, 陈白珍, 石西昌, 李兵, 吴海鹰. 物理化学学报, 2008, 24, 1465.]

    22. [22]

      (22) Li, L. J.; Yao, Z. M.; Lei, J. L.; Xu, H.; Zhang, S. T.; Pan, F. S. Acta Phys. -Chim. Sin. 2009, 25, 1332. [李凌杰, 姚志明, 雷惊雷, 徐辉, 张胜涛, 潘复生. 物理化学学报, 2009, 25, 1332.]

    23. [23]

      (23) Alves, V. A.; da Silva, L. A.; Boodts, J. F. C. Electrochim. Acta 1998, 44, 1525.  

    24. [24]

      (24) Zhong, X. K.; Li, Q.; Hu, J. Y.; Lu, Y. H. Corrosion Sci. 2008, 50, 2304.  

    25. [25]

      (25) Nickolova, D.; Stoyanova, E.; Stoychev, D.; Avramova, I.; Stefanov, P. Surf. Coat. Technol. 2008, 202, 1876.  

  • 加载中
    1. [1]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    6. [6]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    7. [7]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    8. [8]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    9. [9]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    10. [10]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    11. [11]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    12. [12]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    18. [18]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    19. [19]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    20. [20]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

Metrics
  • PDF Downloads(765)
  • Abstract views(2311)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return