Citation: SENTHILKUMAR Annamalai, THARINI Kumaravel, SETHURAMAN Mathur palakrishnan. Steric Effect of Alkyl Substituted Piperidin-4-one Oximes for Corrosion Control of Mild Steel in H2SO4 Medium[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 399-406. doi: 10.3866/PKU.WHXB201112142 shu

Steric Effect of Alkyl Substituted Piperidin-4-one Oximes for Corrosion Control of Mild Steel in H2SO4 Medium

  • Received Date: 4 August 2011
    Available Online: 14 December 2011

  • Three synthesized piperidin-4-one oximes, 3-ethyl-2,6-diphenyl-piperidin-4-one oxime (A), 1- methyl-3-isopropyl-2,6-diphenyl-piperidin-4-one oxime (B), and 3-isopropyl-2,6-diphenyl-piperidin-4-one oxime (C), were tested at different concentrations to determine their ability to inhibit corrosion of mild steel in 1 mol·L-1 H2SO4 and measured by a mass loss method (at various temperatures), polarization and impedance measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM) with energydispersive X-ray spectroscopy (EDS), and a quantum chemical method. The synergistic influence of compounds A, B and C with iodides has also been evaluated. All three compounds show od inhibition efficiency in the following order: A>B>C. Compounds A, B and C were found to physically adsorb on the surface of mild steel while obeying the Temkin isotherm. Polarization measurements indicated that these compounds behave as a mixed mode inhibitor. XRD and SEM with EDS studies revealed the formation of a protective barrier on the mild steel surface by these oximes. The electron donating ability of the studied molecules was tested using semi empirical methods. The studies revealed that the oxime nitrogen, the piperidine moiety, and the phenyl ring assist largely in corrosion control. The studies also showed that the steric crowding by the alkyl group in the piperidine ring affects the inhibitor efficiency. Further, it is interesting to note that all of the studied compounds exhibit synergism with iodide ions.
  • 加载中
    1. [1]

      (1) Senthilkumar, A. N.; Tharini, K.; Sethuraman, M. G. Surface Reviews & Letters 2009, 16, 141.  

    2. [2]

      (2) Senthilkumar, A. N.; Sethuraman, M. G. Corrosion Reviews 2008, 26, 23.  

    3. [3]

      (3) Bothi Raja, P.; Sethuraman, M. G. Materials Letters 2008, 62, 1602.  

    4. [4]

      (4) Raja. P. B.; Rahim, A. A.; Osman, H.; Awang, K. Acta Physico- Chimica Sinica 2010, 26, 2171.

    5. [5]

      (5) Quraishi, M. A.; Sardar, R.; Jamal, D. Materials Chemistry and Physics 2001, 71, 309.  

    6. [6]

      (6) Ozcan, M.; Karadag, F.; Dehri, I. Acta Physico-Chimica Sinica 2008, 24, 1387.  

    7. [7]

      (7) Solmaz, R.; Mert, M. E.; Kardas, G.; Yazici, B.; Erbil, M. Acta Physico-Chimica Sinica 2008, 24, 1185.  

    8. [8]

      (8) Sykes, J. M. British Corrosion Journal 1990, 25, 175

    9. [9]

      (9) Mernari, B.; El-Attari, H.; Traisnel, M.; Bentiss, F.; Lagrenee, M. Corrosion Science 1998, 40, 391.  

    10. [10]

      (10) Braun, R. D.; Lopez, E. E.; Vollmer, D. P. Corrosion Science 1993, 34, 1251.  

    11. [11]

      (11) Muralidharan, S.; Chandrasekar, R.; Iyer, S. V. K. Proceedings of Indian Academy of Sciences 2000, 112, 127.  

    12. [12]

      (12) Baliah, V.; Noller, C. R. Journal of American Chemical Society 1948, 70, 3853.  

    13. [13]

      (13) Aramaki, K.; Hackermann, N. Journal of Electrochemical Society 1969, 116, 568.  

    14. [14]

      (14) Ashassi-Sorkhabi, H.; Shaabani, B.; Seifzadeh, D. Electrochimica Acta 2005, 50, 3446.  

    15. [15]

      (15) Ali, S. A.; El-Shareef, A. M.; Al-Ghamdi, R. F.; Saeed, M. T. Corrosion Science 2005, 47, 2659.  

    16. [16]

      (16) Duan, S. Z.; Tao, Y. L. Interface Chemistry; Higher Education Press: Beijing, 1990; p 124.

    17. [17]

      (17) Bentiss, F.; Traisnel, M.; Lagrenee, M. Corrosion Science 2000, 42, 127.  

    18. [18]

      (18) Noor, E. A. Corrosion Science 2005, 47, 33.  

    19. [19]

      (19) mma, G. K. Materials Chemistry and Physics 1998, 55, 241.  

    20. [20]

      (20) Maitra, A.; Singh, G.; Chakraborty, B. B. Transactions of the Society for the Advancement of Electrochemical Science and Technology 1983, 18, 335.

    21. [21]

      (21) Onuchukwu, A. I.; Trasatti, S. P.; Trasatti, S. Corrosion Science 1994, 36, 1815.  

    22. [22]

      (22) Fishtik, I. F.; Vataman, I. I.; Spatar, F. A. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1984, 165, 1.

    23. [23]

      (23) Oguzie, E. E.; Unaegbu, C.; Ogukwe, C. N.; Okolue, B. N.; Onuchukwu, A. Materials Chemistry and Physics 2004, 84, 363.  

    24. [24]

      (24) Bentiss, F.; Bouanis, M.; Mernari, B.; Traisnel, M.; Vezin, H.; Lagrenee, M. Applied Surface Science 2007, 253, 3696.  

    25. [25]

      (25) Bayoumi, F. M.; Ghanem,W. A. Materials Letters 2005, 59, 3806.  

    26. [26]

      (26) Awad, H. S.; Abdel Ganad, S. Anti-corrosion Methods and Materials 2005, 52, 328.  

    27. [27]

      (27) Moretti, G.; Quartarone, G.; Tassan, A.; Zingales, A. Electrochimica Acta 1996, 41, 1971.  

    28. [28]

      (28) Bentiss, F.; Mehdi, B.; Mernari, B.; Traisnel, M.; Vezin, H. Corrosion Journal (Houston) 2002, 58, 399.  

    29. [29]

      (29) Ozcan, M.; Dehri, I. Progress in Organic Coatings 2004, 51, 181.  

    30. [30]

      (30) Ahamad, I.; Prasad, R.; Quraishi, M. A. Journal of Solid State Electrochemistry 2010, 14, 2095.  

    31. [31]

      (31) Muralidhran, S.; Quraishi, M. A.; Iyer, S. V. K. Corrosion Science 1995, 37, 1739.  

    32. [32]

      (32) Abd El-Rehim, S. S.; Ibrahim, M. A. M.; Khalad, K. F. Journal of Applied Electrochemistry 1999, 29, 593.  

    33. [33]

      (33) Favre, M.; Landolt, D. Corrosion Science 1993, 34, 1481.  

    34. [34]

      (34) Narmada, P.; Venkateswara Rao, M.; Venkatachari, G.; Appa Rao, B. V. Anti-Corrosion Methods and Materials 2006, 53, 310.  

    35. [35]

      (35) Tamura, H.; Matsuda, Y.; Iijima, M. Chemical Society Japan 1969, 72, 1077.

  • 加载中
    1. [1]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    2. [2]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    3. [3]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    4. [4]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    5. [5]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    6. [6]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    7. [7]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    8. [8]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    9. [9]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    10. [10]

      Chao Ma Peng Guo Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235

    11. [11]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    12. [12]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    13. [13]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    14. [14]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    15. [15]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    16. [16]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    17. [17]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    18. [18]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    19. [19]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    20. [20]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

Metrics
  • PDF Downloads(1065)
  • Abstract views(1736)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return