Citation: WU Xiao-Qin, ZONG Rui-Long, ZHU Yong-Fa. Enhanced MnO2 Nanorods to CO and Volatile Organic Compounds Oxidative Activity by Platinum Nanoparticles[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 437-444. doi: 10.3866/PKU.WHXB201112082
-
Pure-phase α-MnO2 and δ-MnO2 nanorods were synthesized through an easy solution-based hydrothermal method. Platinum nanoparticles supported by the obtained MnO2 nanorods were prepared by the colloid deposition process. The microstructure and adsorption activity of the obtained catalysts were researched by different techniques such as transmission electron microscopy (TEM), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption measurements, and H2 temperature-programmed reduction (H2-TPR). The cataluminescence (CTL) properties of CO and volatile organic compounds (VOCs), such as benzene and toluene, on the resultant catalysts were explored. The results showed that the platinum nanoparticles were well distributed in α-MnO2 and δ-MnO2. In addition, the Pt load process does not affect the crystal phase structure of the α-MnO2 nanorods, but can generate structural changes in the δ-MnO2 nanorods. The phase transformation did not the result of the reaction between the δ-MnO2 nanorods and Pt as shown in the XPS study. The α-MnO2 and δ-MnO2 nanorods showed a high catalytic oxidative activity toward CO, benzene, and toluene, and δ-MnO2 showed a higher activity than the α-MnO2 phase. Although, the Pt load led to a decrease in the surface area of the MnO2 nanorods which was confirmed by the N2 adsorption-desorption measurements, but the H2-TPR results showed that the interaction between Pt and MnO2 was intense, which significantly enhanced its catalytic activity. The Pt/δ-MnO2 nanorods exhibited a higher activity than Pt/α-MnO2. CTL research showed that the activities of the four catalysts increased in the order of α-MnO2≤ δ-MnO2 < Pt/α-MnO2 < Pt/δ-MnO2, and the H2-TPR results were consistent. Pt loading significantly enhanced the catalytic oxidative activity of α-MnO2 and δ-MnO2 nanorods to CO, benzene, and toluene.
-
Keywords:
-
Catalytic activity
, - MnO2 nanorod,
- Pt nanoparticle,
- Cataluminescence,
- CO,
- Benzene,
- Toluene
-
-
-
[1]
(1) Amann, M.; Lutz, M. J. Hazard. Mater. 2000, 78, 41.
-
[2]
(2) Li, N.; Gaillard, F. Appl. Catal. B: Environ. 2009, 88, 152.
-
[3]
(3) Aguero, F. N.; Barbero, B. P.; Gambaro, L.; Cadús, L. E. Appl. Catal. B: Environ. 2009, 91, 108.
-
[4]
(4) Li, Y.; Zhang, X.; He, H.; Yu, Y.; Yuan, T.; Tian, Z.;Wang, J.; Li, Y. Appl. Catal. B: Environ. 2009, 89, 659.
-
[5]
(5) Gandhe, A. R.; Rebello, J. S.; Figueiredo, J. L.; Fernandes, J. B. Appl. Catal. B: Environ. 2007, 72, 129.
-
[6]
(6) Liotta, L. F. Appl. Catal. B: Environmental. 2010, 100, 403.
-
[7]
(7) Li, H. F.; Lu, G. Z.; Dai, Q. G.;Wang, Y. Q.; Guo, Y.; Guo, Y. L. Appl. Catal. B: Environ. 2011, 102, 475.
-
[8]
(8) Diehl, F.; Barbier, J. Jr,; Duprez, D.; Guibard, I.; Mabilon, G. Appl. Catal. B: Environ. 2010, 95, 217.
-
[9]
(9) He, C.; Li, J.; Li, P.; Cheng, J.; Hao, Z.; Xu, Z. P. Appl. Catal. B: Environ. 2010, 96, 466.
-
[10]
(10) Pitkäaho, S.; Ojala, S.; Maunula, T.; Savimäki, A.; Kinnunen, T.; Keiski, R. L. Appl. Catal. B: Environ. 2011, 102, 395.
-
[11]
(11) Ousmane, M.; Liotta, L. F.; Carlo, G. D.; Pantaleo, G.; Venezia, A. M.; Deganello, G.; Retailleau, L.; Boreave, A.; Giroir- Fendler, A. Appl. Catal. B: Environ. 2011, 101, 629.
-
[12]
(12) Kim, S. C. J. Hazard. Mater. B 2002, 91, 285.
-
[13]
(13) Rivas, B.; López-Fonseca, R.; Gutiérrez-Ortiz, M.; Giérrez- Ortiz, J. I. Appl. Catal. B: Environ. 2011, 101, 317.
-
[14]
(14) Wang, X.; Na, N.; Zhang, S. C.;Wu, Y. Y.; Zhang, X. L. J. Am. Chem. Soc. 2007, 129, 6062.
-
[15]
(15) Comotti, M.; Li,W. C.; Spliethoff, B.; Schüth, F. J. Am. Chem. Soc. 2006, 128, 917.
-
[16]
(16) Bulgan, G.; Zong, R. L.; Liang, S. H.; Yao,W. Q.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2008, 24, 1547. [Bulgan G., 宗瑞隆, 梁淑惠, 姚文清, 朱永法. 物理化学学报, 2008, 24, 1547.]
- [17]
-
[18]
(18) Beauchet, R.; Mijoin, J.; Batonneau-Gener, I.; Magnoux, P. Appl. Catal. B: Environ. 2010, 100, 91.
-
[19]
(19) Wu, X. Q.; Zong, R. L.; Mu, H. J.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2010, 26, 3002. [吴小琴, 宗瑞隆, 牟豪杰, 朱永法. 物理化学学报, 2010, 26, 3002.]
-
[20]
(20) Song, Y. Q.; Kang, C. L.; Feng, Y. L.; Liu, F.; Zhou, X. L.; Wang, J. A.; Xu, L. Y. Catal. Today 2009, 148, 63.
-
[21]
(21) Mitsui, T.; Tsutsui, K.; Matsui, T.; Kikuchi, R.; Eguchi, K. Appl. Catal. B: Environ. 2008, 78, 158.
-
[22]
(22) Lahousse, C.; Bernier, A.; Grange, P.; Delmon, B.; Papaefthimiou, P.; Ioannides, T.; Verykiosy, X. J. Catal .1998, 178, 214.
-
[23]
(23) Lee, S. J.; Gavriilidis, A.; Pankhurst, Q. A.; Kyek, A.;Wagner, F. E.;Wong, P. C. L.; Yeung, K. L. J. Catal. 2001, 200, 298.
-
[24]
(24) Hamoudi, S.; Larachi, F.; Adnot, A.; Sayari, A. J. Catal. 1999, 185, 333.
-
[25]
(25) Liang, S. H.; Teng, F.; Bulgan, G.; Zong, R. L.; Zhu, Y. F. J. Phys. Chem. C 2008, 112, 5307.
-
[26]
(26) Teng, F.; Yao,W. Q.; Zhu, Y. F.; Chen, M. D.;Wang, R. H.; Mho, S.; Meng, D. D. J. Phys. Chem. C 2009, 113, 3089.
- [27]
-
[28]
(28) Chakraborty, S.; Raj, C. R. Sensors and Actuators B 2010, 147, 222.
-
[29]
(29) Xu, R.;Wang, X.;Wang, D. S.; Zhou, K. B.; Li, Y. D. J. Catal. 2006, 237, 426.
-
[30]
(30) Wang, L. C.; Liu, Y. M.; Chen, M.; Cao, Y.; He, H. Y.; Fan, K. N. J. Phys. Chem. C 2008, 112, 6981.
-
[31]
(31) Banerjee, D.; Nesbitt, H.W. Geochim Cosmochim Acta 2001, 65, 1703.
-
[32]
(32) Wang, L. C.; He, L.; Liu, Q.; Liu, Y. M.; Chen, M.; Cao, Y.; He, H. Y.; Fan, K. N. Appl. Catal. A: Gen. 2008, 344, 150.
-
[33]
(33) Kapteijn, F.; van Langeveld, A. D.; Moulijn, J. A.; Andreini, A.; Vuurman, M. A.; Turek, A. M.; Jehng, J. M.;Wachs, I. E. J. Catal. 1994, 150, 94.
-
[34]
(34) Muilenbergy, G. E. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Minnesota, 1979.
-
[35]
(35) Srinivasan, B.; Gardner, S. D. Surf. Interface Anal. 1998, 26, 1035.
-
[36]
(36) Zhang, L. C.; Zhou, Q.; Liu, Z. H.; Hou, X. D.; Li, Y. B.; Lv, Y. Chem. Mater. 2009, 21, 5066.
-
[37]
(37) Breysse, M.; Claudel, B.; Faure, L.; Guenin, M.;Williams, R. J. J.;Wolkenstein, T. J. Catal. 1976, 45, 137.
-
[1]
-
-
[1]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[2]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[3]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[4]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[5]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[6]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[7]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[8]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[9]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[10]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[11]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[12]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[13]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[14]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[15]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[16]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[17]
Tao Cao , Fang Fang , Nianguang Li , Yinan Zhang , Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098
-
[18]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[19]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[20]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[1]
Metrics
- PDF Downloads(976)
- Abstract views(3301)
- HTML views(2)