Citation: CHEN Yu-Hang, ZHANG Chao-Min, WU Jian-Bao, LIN Qi. Effect of O/N Substitutive Doping on the Band Structure and Transport Properties of the zigzag Boron Nitride Narrow-Nanoribbons[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 567-572. doi: 10.3866/PKU.WHXB201112071 shu

Effect of O/N Substitutive Doping on the Band Structure and Transport Properties of the zigzag Boron Nitride Narrow-Nanoribbons

  • Received Date: 13 October 2011
    Available Online: 7 December 2011

    Fund Project: 国家自然科学基金(11047164) (11047164) 上海市高校选拔培养优秀青年教师科研专项基金(gjd10023) (gjd10023)上海市教委学科建设项目(11XK11, 2011X34)资助 (11XK11, 2011X34)

  • By performing first-principles calculations and non-equilibrium Green's function, the energy band structure, transmission spectrum and current-voltage characteristics of the O-doping zigzag boron nitride narrow-nanoribbons (z-BNNNRs) were investigated. The calculation results show that O-doping remarkably changes the z-BNNNRs energy band structure and transform the material from a semiconductor to a metal. It is also demonstrated that the system exhibits an obvious negative differential resistance (NDR) characteristic. Further investigations revealed that the position and concentration of O-doping also affected the NDR behavior over a certain range of bias. The negative differential conductance (NDC) for edge-doping is greater than that for middle-doping and the maximum of the NDC increases with an increase of the concentration of O-doping. This special electronic transport property of O-doping z-BNNNRs makes it more suitable as a candidate for molecular devices.
  • 加载中
    1. [1]

      (1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  

    2. [2]

      (2) Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10451.  

    3. [3]

      (3) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Gri rieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, 197.  

    4. [4]

      (4) Zhang, Y.; Tan, Y.W.; Stormer, H. L.; Kim, P.; Nature 2005, 438, 201.  

    5. [5]

      (5) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.  

    6. [6]

      (6) Castro, N. A. H.; Peres, N. M. R.; Novoselov, K. S.; Gein, A. K. Rev. Mod. Phys. 2009, 81, 109.  

    7. [7]

      (7) Son, Y.; Cohen, M. L.; Louie, S. G. Phys. Rev. Lett. 2006, 97, 216803.  

    8. [8]

      (8) Son, Y.; Cohen, M. L.; Louie, S. G. Nature 2006, 444, 347.  

    9. [9]

      (9) Ouyang, F. P.; Xu, H.;Wei, C. Acta. Phys. Sin. 2008, 57, 1073. [欧阳方平, 徐慧, 魏辰. 物理学报, 2008, 57, 1073.]

    10. [10]

      (10) Ouyang, F. P.; Xu, H.; Li, M. J.; Xiao, J. Acta. Phys. -Chim. Sin. 2008, 24, 328. [欧阳方平, 徐慧, 李明君, 肖金. 物理化学学报, 2008, 24, 328.]

    11. [11]

      (11) Ouyang, F. P.;Wang, H. Y.; Li, M. J.; Xiao, J.; Xu, H. Acta. Phys. Sin. 2008, 57, 7132. [欧阳方平, 王焕友, 李明君, 肖金, 徐慧. 物理学报, 2008, 57, 7132.]

    12. [12]

      (12) Ouyang, F. P.;Wang, X. J.; Zhang, H.; Xiao, J.; Chen, L. N.; Xu, H. Acta. Phys. Sin. 2009, 58, 5640. [欧阳方平, 王晓军, 张华, 肖金, 陈灵娜, 徐慧. 物理学报, 2009, 58, 5640.]

    13. [13]

      (13) Lin, Q.; Chen, Y. H.;Wu, J. B.; Kong, Z. M. Acta. Phys. Sin. 2011, 60, 97103. [林琦, 陈余行, 吴建宝, 孔宗敏. 物理学报, 2011, 60, 97103.]

    14. [14]

      (14) Zhen, X. H.; Dai, Z. X.;Wang, X. L.; Zeng, Z. Acta. Phys. Sin. 2009, 58, S259. [郑小宏, 戴振翔, 王贤龙, 曾雉. 物理学报, 2009, 58 (专刊), S259.]

    15. [15]

      (15) Watanabe, K.; Taniguchi, T.; Kanda, H. Nat.Mater. 2004, 3, 404.  

    16. [16]

      (16) Arnaud, B.; Lebègue, S.; Rabiller, P.; Alouani, M. Phys. Rev. L 2006, 96, 26402.

    17. [17]

      (17) Li, J.; Gui, G.; Zhong, J. X. Journal of Applied Physics 2008, 104, 94311.  

    18. [18]

      (18) Zhang, Z. H.; Guo,W. L. Phys. Rev. B 2008, 77, 75403.  

    19. [19]

      (19) Du, A. J.; Smith, S. C.; Lu, G. Q. Chem. Phys. Lett. 2007, 447, 181.  

    20. [20]

      (20) Chen, Z. G.; Zou, J.; Liu, G.; Li, F.;Wang, Y.;Wang, L.; Yuan, X. L. ACS Nano 2008, 2, 2183.  

    21. [21]

      (21) Park, C. H.; Louie, S. G. Nano Lett. 2008, 8,. 2200.

    22. [22]

      (22) Barone, V.; Peralta, J. E. Nano Lett. 2008, 8Regular 2210.

    23. [23]

      (23) Jin, C. H.; Lin, F.; Suenaga, K.; Lijima, S. Phys. Rev. Lett. 2009, 102, 195505.  

    24. [24]

      (24) Gui, G.; Li, J.; Zhong, J. X. Phys. Rev. B 2008, 78, 75435.  

    25. [25]

      (25) Brandbyge, M.; Mozos, J. S.; Ordejón, P.; Taylor, J.; Stokbro, K. Phys. Rev. B 2002, 65, 165401.  

    26. [26]

      (26) Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge: Cambridge University Press, 1995; pp 117-163.

    27. [27]

      (27) Silva, L. D. A.; Guerini, S. C.; Lemos, V.; Filho, J. M. IEEE Trans. Nanotechnol. 2006, 5, 517.  

    28. [28]

      (28) Zhao, P.; Liu, D. S. Chin. Sci. Bull. 2010, 55, 4104.  

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    12. [12]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    17. [17]

      Qingcui Yang Wen Liu Li Cao Chen Tang Bing Xu Jie Zhao . For Entropy Hurts: Life Thrives on Negative Entropy. University Chemistry, 2024, 39(9): 151-156. doi: 10.12461/PKU.DXHX202402029

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    20. [20]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

Metrics
  • PDF Downloads(760)
  • Abstract views(2300)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return