Citation: XU Zi-Jie, JI Tao, ZHAO Lei, WANG Wei-Yan, YANG Chun-Yan, GAN Li-Hua. Restructured Carbon Aerogels and Their Electrochemical Performances[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 361-366. doi: 10.3866/PKU.WHXB201112063 shu

Restructured Carbon Aerogels and Their Electrochemical Performances

  • Received Date: 26 September 2011
    Available Online: 6 December 2011

    Fund Project: 国家自然科学基金(20973127)资助项目 (20973127)

  • Restructured carbon aerogels (RCAs) were obtained by annealing carbon aerogels (CAs) in sodium melt at 800 °C for 3 h and the differences in electrochemical performance between the resultant CAs and RCAs were studied. X-ray diffraction (XRD), Raman scattering spectra, gas physisorption (BET), transmission electron microscopy (TEM), and electrochemical impedance spectroscopy (EIS) were used to probe the structures of CAs and RCAs. The studies indicated that the amorphous carbon particles were rearranged in sodium melt, in which the surface area of the resultant RCAs was 48% larger than that of CAs. Two concentrated pore distributions were observed at the apertures of 2 and 4 nm in RCAs. The pore volume at apertures below 10 nm is 30% of the total volume in RCAs, which is 3 times as many as that in CAs. Electrochemical performances of both CAs and RCAs were investigated and the results indicate that the inner resistance of RCAs is only 45% of that in the sample of CAs. The results also indicate that RCAs display od performance in capacitance characteristics.
  • 加载中
    1. [1]

      (1) Hou, C. H.; Liang, C. D.; Yiacoumi, S.; Dai, S.; Tsouris, C. J. Colloid Interface Sci. 2006, 302, 54.  

    2. [2]

      (2) Li, J.;Wang, X. Y.; Huang, Q. H.; Dai, C. L. The Chinese Journal of Nonferrous Materials 2006, 16, 1468. [李俊, 王先友, 黄庆华, 戴春玲. 中国有色金属学报, 2006, 16, 1468.]

    3. [3]

      (3) Frackowiaka, E.; Beguin, F. Carbon 2001, 39, 937.  

    4. [4]

      (4) Bordjiba, T.; Mohamedi, M.; Dao, L. J. Power Sources 2007, 172, 991.  

    5. [5]

      (5) Amini, N.; Aguey-Zinsou, K. F.; Guo, Z. X. Carbon 2011, 49, 3857.  

    6. [6]

      (6) Huang, C. H.; Doong, R. A.; Gu, D.; Zhao, D. Y. Carbon 2011, 49, 3055.  

    7. [7]

      (7) Zhou, J. H.; He, J. P.; Ji, Y. J.; Zhao, G.W.; Zhang, C. X.; Chen, X.;Wang, T. Acta Physico-Chimica Sinica 2008, 24, 839. [周建华, 何建平, 计亚军, 赵桂网, 张传香, 陈秀, 王涛. 物理化学学报, 2008, 24, 839.]  

    8. [8]

      (8) Ji, Y. J.; He, J. P.; Zhou, J. H.; Dang,W. J.; Liu, X. L.; Zhang, C. X.; Zhao, G.W. J. Mater. Sci. Eng. 2007, 4, 501. [计亚军, 何建平, 周建华, 党王娟, 刘晓磊, 张传香, 赵桂网. 材料科学与工程学报, 2007, 4, 501.]

    9. [9]

      (9) Francisco, J. M. H.; Maldonado, H.; Carlos, M. C.; Francisco, C. M.; Agustín F. J. Hazard. Mater. 2007, 148, 548.  

    10. [10]

      (10) Feng, Y.; Miao, L.; Tanemura, S.; Tanemura, M.; Suzuki, K. Rare Metals 2006, 25, 284.  

    11. [11]

      (11) Pekala, R.W.; Alviso, C. T.; Lu, X.; Grob, J.; Fricke, J. J. Non- Cryst. Solids 1995, 188, 34.  

    12. [12]

      (12) Wu, D. C.; Fu, R.W.; Dresselhaus, M. S.; Dresselhaus, G. Carbon 2006, 44, 675.  

    13. [13]

      (13) Zhai, D. Y.; Du, H. D.; Li, B. H.; Zhu, Y.; Kang, F. Carbon 2011, 49, 718.  

    14. [14]

      (14) Wang, Z. L.; Zhang, X. B.; Liu, X. J.; Lv, M. F.; Yang, K. Y.; Meng, J. Carbon 2011, 49, 161.  

    15. [15]

      (15) Srinivasa, G.; Lovellb, A.; Howarda, C. A.; Skippera, N. T.; Ellerbya, M.; Bennington, S. M. Synthetic Metals 2010, 160, 1631.  

    16. [16]

      (16) Claire, H.; Albert, H.; Philippe, L. Solid State Sciences 2004, 6, 125.  

    17. [17]

      (17) Pelleg, J.; Ashkenazi, D.; Ganor, M. Mater. Sci. Eng. A 2000, 281, 239.  

    18. [18]

      (18) Xu, Z. J.; Ji, T.;Wang,W. Y.; Xia, B. Z.; Ma, C.; Gan, L. H. Acta Physico-Chimica Sinica 2011, 27, 262. [徐子颉, 吉涛, 王玮衍, 夏炳忠, 马超, 甘礼华. 物理化学学报, 2011, 27, 262.]

    19. [19]

      (19) Tuinstra, F.; Koenig, J. L. J. Chem. Phys. 1970, 53, 1126.  

    20. [20]

      (20) Nakamizo, M.; Kammereck, R.;Walker, P. L. Carbon 1974, 12, 259.  

    21. [21]

      (21) Nikiel, L. Carbon 1993, 31, 1313.  

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    4. [4]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    9. [9]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    10. [10]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    11. [11]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    12. [12]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    13. [13]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    14. [14]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    17. [17]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    18. [18]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    19. [19]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    20. [20]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

Metrics
  • PDF Downloads(812)
  • Abstract views(2463)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return