Citation: XU Zi-Jie, JI Tao, ZHAO Lei, WANG Wei-Yan, YANG Chun-Yan, GAN Li-Hua. Restructured Carbon Aerogels and Their Electrochemical Performances[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 361-366. doi: 10.3866/PKU.WHXB201112063 shu

Restructured Carbon Aerogels and Their Electrochemical Performances

  • Received Date: 26 September 2011
    Available Online: 6 December 2011

    Fund Project: 国家自然科学基金(20973127)资助项目 (20973127)

  • Restructured carbon aerogels (RCAs) were obtained by annealing carbon aerogels (CAs) in sodium melt at 800 °C for 3 h and the differences in electrochemical performance between the resultant CAs and RCAs were studied. X-ray diffraction (XRD), Raman scattering spectra, gas physisorption (BET), transmission electron microscopy (TEM), and electrochemical impedance spectroscopy (EIS) were used to probe the structures of CAs and RCAs. The studies indicated that the amorphous carbon particles were rearranged in sodium melt, in which the surface area of the resultant RCAs was 48% larger than that of CAs. Two concentrated pore distributions were observed at the apertures of 2 and 4 nm in RCAs. The pore volume at apertures below 10 nm is 30% of the total volume in RCAs, which is 3 times as many as that in CAs. Electrochemical performances of both CAs and RCAs were investigated and the results indicate that the inner resistance of RCAs is only 45% of that in the sample of CAs. The results also indicate that RCAs display od performance in capacitance characteristics.
  • 加载中
    1. [1]

      (1) Hou, C. H.; Liang, C. D.; Yiacoumi, S.; Dai, S.; Tsouris, C. J. Colloid Interface Sci. 2006, 302, 54.  

    2. [2]

      (2) Li, J.;Wang, X. Y.; Huang, Q. H.; Dai, C. L. The Chinese Journal of Nonferrous Materials 2006, 16, 1468. [李俊, 王先友, 黄庆华, 戴春玲. 中国有色金属学报, 2006, 16, 1468.]

    3. [3]

      (3) Frackowiaka, E.; Beguin, F. Carbon 2001, 39, 937.  

    4. [4]

      (4) Bordjiba, T.; Mohamedi, M.; Dao, L. J. Power Sources 2007, 172, 991.  

    5. [5]

      (5) Amini, N.; Aguey-Zinsou, K. F.; Guo, Z. X. Carbon 2011, 49, 3857.  

    6. [6]

      (6) Huang, C. H.; Doong, R. A.; Gu, D.; Zhao, D. Y. Carbon 2011, 49, 3055.  

    7. [7]

      (7) Zhou, J. H.; He, J. P.; Ji, Y. J.; Zhao, G.W.; Zhang, C. X.; Chen, X.;Wang, T. Acta Physico-Chimica Sinica 2008, 24, 839. [周建华, 何建平, 计亚军, 赵桂网, 张传香, 陈秀, 王涛. 物理化学学报, 2008, 24, 839.]  

    8. [8]

      (8) Ji, Y. J.; He, J. P.; Zhou, J. H.; Dang,W. J.; Liu, X. L.; Zhang, C. X.; Zhao, G.W. J. Mater. Sci. Eng. 2007, 4, 501. [计亚军, 何建平, 周建华, 党王娟, 刘晓磊, 张传香, 赵桂网. 材料科学与工程学报, 2007, 4, 501.]

    9. [9]

      (9) Francisco, J. M. H.; Maldonado, H.; Carlos, M. C.; Francisco, C. M.; Agustín F. J. Hazard. Mater. 2007, 148, 548.  

    10. [10]

      (10) Feng, Y.; Miao, L.; Tanemura, S.; Tanemura, M.; Suzuki, K. Rare Metals 2006, 25, 284.  

    11. [11]

      (11) Pekala, R.W.; Alviso, C. T.; Lu, X.; Grob, J.; Fricke, J. J. Non- Cryst. Solids 1995, 188, 34.  

    12. [12]

      (12) Wu, D. C.; Fu, R.W.; Dresselhaus, M. S.; Dresselhaus, G. Carbon 2006, 44, 675.  

    13. [13]

      (13) Zhai, D. Y.; Du, H. D.; Li, B. H.; Zhu, Y.; Kang, F. Carbon 2011, 49, 718.  

    14. [14]

      (14) Wang, Z. L.; Zhang, X. B.; Liu, X. J.; Lv, M. F.; Yang, K. Y.; Meng, J. Carbon 2011, 49, 161.  

    15. [15]

      (15) Srinivasa, G.; Lovellb, A.; Howarda, C. A.; Skippera, N. T.; Ellerbya, M.; Bennington, S. M. Synthetic Metals 2010, 160, 1631.  

    16. [16]

      (16) Claire, H.; Albert, H.; Philippe, L. Solid State Sciences 2004, 6, 125.  

    17. [17]

      (17) Pelleg, J.; Ashkenazi, D.; Ganor, M. Mater. Sci. Eng. A 2000, 281, 239.  

    18. [18]

      (18) Xu, Z. J.; Ji, T.;Wang,W. Y.; Xia, B. Z.; Ma, C.; Gan, L. H. Acta Physico-Chimica Sinica 2011, 27, 262. [徐子颉, 吉涛, 王玮衍, 夏炳忠, 马超, 甘礼华. 物理化学学报, 2011, 27, 262.]

    19. [19]

      (19) Tuinstra, F.; Koenig, J. L. J. Chem. Phys. 1970, 53, 1126.  

    20. [20]

      (20) Nakamizo, M.; Kammereck, R.;Walker, P. L. Carbon 1974, 12, 259.  

    21. [21]

      (21) Nikiel, L. Carbon 1993, 31, 1313.  

  • 加载中
    1. [1]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    2. [2]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    3. [3]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    4. [4]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    7. [7]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    15. [15]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    16. [16]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    17. [17]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    18. [18]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    19. [19]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    20. [20]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

Metrics
  • PDF Downloads(812)
  • Abstract views(2503)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return