Citation: ZHANG Zhi-Yu, HAN Pei-De, ZHANG Cai-Li, ZHANG Xue, SUN Xiang-Lei, LI Yu-Ping. Electronic Structures and Optical Properties of Cu:MgF2 Crystal[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 324-330. doi: 10.3866/PKU.WHXB201112061 shu

Electronic Structures and Optical Properties of Cu:MgF2 Crystal

  • Received Date: 20 July 2011
    Available Online: 6 December 2011

    Fund Project: 国家自然科学基金(50874079, 51002102) (50874079, 51002102)太原市科技项目(100115105)资助 (100115105)

  • Based on the density functional pseudopotential method, the geometries, electronic structures, and optical properties of MgF2 with different atomic fractions of Cu doping (2.08%, 4.16%, and 6.24%) are compared in detail. Cu substitution of the Mg sites induces an effective reduction of the band gap of MgF2; and the band gap is continuously reduced with increasing Cu doping level. Also, the calculations show that the refractive index and absorption increase with increasing Cu doping. More importantly, an absorption around 4 eV is found. The mechanisms of this transition in the doped and undoped materials are discussed. The Cu doped MgF2 system could be a potential candidate for photoelectrochemical applications.
  • 加载中
    1. [1]

      (1) Nofar, M.; Madaah Hosseini, H. R.; Shivaee, H. A. Infrared Phys. Technol. 2008, 51, 546.  

    2. [2]

      (2) Perales, F.; Herrero, J. M.; Jaque, D.; De las Heras, C. Opt. Mater. 2007, 29, 783.  

    3. [3]

      (3) Yu, H.; Qi, H. J.; Cui, Y.; Shen, Y. M.; Shao, J. D.; Fan, Z. X. Appl. Surf. Sci. 2007, 253, 6113.  

    4. [4]

      (4) Di Lieto, A. Optics and Lasers in Engineering 2003, 39, 309.  

    5. [5]

      (5) Brika, M. G.; Avramb, C. N.; Avram, N. M. J. Phys. Chem. Solids 2008, 69, 1796.  

    6. [6]

      (6) Pena, A.; Camy, P.; Benayad, A.; Doualan, J. L.; Maurel, C.; Olivier, M.; Nazabal, V.; Moncorgé, R. Opt. Mater. 2011, 4, 25.

    7. [7]

      (7) Wojciechowska, M.; Haber, J.; Lomnicki, S.; Stoch, J. J. Mol. Catal. A-Chem. 1999, 141, 155.  

    8. [8]

      (8) Sun, Z. Q.; Xiao, L.; Cao, L.; Song, X. P.; Sun, D. M. Chin. Opt. Lett. 2009, 7, 10.

    9. [9]

      (9) Wojciechowska, M.; Malczewska, A.; Czajka, B.; Zieli′nski, M.; slar, J. Appl. Catal. A 2002, 237, 63.  

    10. [10]

      (10) Wojciechowska, M.; Przystajko,W.; Zielin′ski, M. Catalysis Today 2007, 119, 338.  

    11. [11]

      (11) Tomska-Foralewska, I.; Zieli´ nski, M.; Pietrowski, M.; Przystajko,W.;Wojciechowska, M. Catalysis Today 2010, 12, 16.

    12. [12]

      (12) Secu, M.; Secu, C. E.; Jipa, S.; Zaharescu, T.; Cutrubinis, M. Radiat. Meas. 2008, 43, 383.  

    13. [13]

      (13) Sun, Z. Q.; Sun, D. M.; Ruan, T. N. Vacuum 2003, 68, 155.

    14. [14]

      (14) Sun, Z. Q.; Cai, Q.; Song, X. P. Thin Solid Films 2008, 516, 2280.  

    15. [15]

      (15) Sun, Z. Q.; He, Y. P.; Song, X. P.; Sun, D. M. Acta Phys. Sin. 2003, 52, 6. [孙兆奇, 何玉平, 宋学萍, 孙大明. 物理学报, 2003, 52, 6.]

    16. [16]

      (16) Zhang, J. H.; Ding, J.W.; Lu, Z. H. Acta Phys. Sin. 2009, 58, 1901. [张计划, 丁建文, 卢章辉. 物理学报, 2009, 58, 1901.]

    17. [17]

      (17) Brik, M. G.; Sildos, I.; Kiisk, V. Physica B 2010, 405, 2450.  

    18. [18]

      (18) Li, Z. B.; Zhu, Y.; Yao, K. L. J. Mol. Sci. 2011, 27, 4. [李宗宝, 祝娅, 姚凯伦. 分子科学学报, 2011, 27, 4.]

    19. [19]

      (19) Fang, C. M.; Ramanujachary, K. V.; Hintzen, H. T.; deWith, G. J. Alloys. Compd. 2003, 351, 72.  

    20. [20]

      (20) Zhukovskii, Y. F.; Kotomin, E. A.; Fuks, D.; Dorfman, S. Surf. Sci. 2004, 566, 122.  

    21. [21]

      (21) Chahed, A.; Benhelal, O.; Laksari, S.; Abbar, B.; Bouhafs, B.; Amrane, N. Physica B 2005, 367, 142.  

    22. [22]

      (22) Zhang, F. C.; Zhang,W. H.; Dong, J. T.; Zhang, Z. Y. Acta Phys.- Chim. Sin. 2011, 27 (11), 2593.

    23. [23]

      (23) Ramesh Babu, K.; Lingam, C. B.; Auluck, S.; Tewari, S. P.; Vaitheeswaran, G. J. Solid State Chem. 2010, 10, 1016.

    24. [24]

      (24) Vassilyeva, A. F.; Eglitis, R. I.; Kotomin, E. A.; Dauletbekov, A. K. Physica B 2010, 405, 2125.  

    25. [25]

      (25) Dang, S. H.; Li, C. X.; Han, P. D. Acta Phys. Sin. 2009, 58, 4137. [党随虎, 李春霞, 韩培德. 物理学报, 2009, 58, 4137.]

    26. [26]

      (26) Bi, Y. J.; Guo, Z. Y.; Sun, H. Q.; Lin, Z.; Dong, Y. C. Acta Phys. . Sin. 2008, 57, 7800. [毕艳军, 郭志友, 孙慧卿, 林竹, 董玉成. 物理学报, 2008, 57, 7800.]

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    7. [7]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    10. [10]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    11. [11]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    12. [12]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    13. [13]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    14. [14]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    15. [15]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    16. [16]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    17. [17]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    18. [18]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    19. [19]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    20. [20]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

Metrics
  • PDF Downloads(1225)
  • Abstract views(3788)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return