Citation: MAO Jing, DAI Ke-Hua, ZHAI Yu-Chun. High Rate Capability and Cycling Stability of Li1.07Mn1.93O4 Nanoflakes Synthesized via Gel-Combustion Method[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 349-354. doi: 10.3866/PKU.WHXB201112052 shu

High Rate Capability and Cycling Stability of Li1.07Mn1.93O4 Nanoflakes Synthesized via Gel-Combustion Method

  • Received Date: 18 July 2011
    Available Online: 5 December 2011

  • Li1.07Mn1.93O4 nanoflakes were synthesized by a gel-combustion method using polyvinylpyrrolidone (PVP) as the polymer chelating agent and fuel. Thermogravimetric and differential thermal analyses (TG/DTA) were used to investigate the combustion process of the gel precursor. X-ray diffraction (XRD) analysis indicated that the as-prepared Li1.07Mn1.93O4 was a pure, highly crystalline phase. Scanning electron microscopy (SEM) results showed that most of the secondary particles were nanoflakes, about 100 nm in thickness, and the primary particle of the nanoflakes was about 100 nm in size. Charge and discharge tests suggested that the Li1.07Mn1.93O4 nanoflakes had excellent rate capability and od cycling stability. The initial discharge capacity was 115.4 mAh·g-1 at a rate of 0.5C (1C=120 mAh·g-1) and the capacity was maintained at 105.3 mAh·g-1 at the high discharge rate of 40C. When cycling at 10C, the material retained 81% of its initial capacity after 850 cycles. Electrochemical impedance spectroscopy (EIS) tests indicated that the charge-transfer resistance (Rct) of the Li1.07Mn1.93O4 nanoflakes was much less than that of commercial Li1.07Mn1.93O4.
  • 加载中
    1. [1]

      (1) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.  

    2. [2]

      (2) Du Pasquier, A.; Huang, C. C.; Spitler, T. Journal of Power Sources 2009, 186, 508.  

    3. [3]

      (3) Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. S. Nano Letters 2009, 9, 1045.  

    4. [4]

      (4) Lanz, M.; Kormann, C.; Steininger, H.; Heil, G.; Haas, O.; Novak, P. Journal of the Electrochemical Society 2000, 147, 3997.  

    5. [5]

      (5) Lee, J.W.; Park, S. M.; Kim, H. J. Electrochemistry Communications 2009, 11, 1101.  

    6. [6]

      (6) Lee, K. S.; Myung, S. T.; Bang, H.; Amine, K.; Kim, D.W.; Sun, Y. K. Journal of Power Sources 2009, 189, 494.  

    7. [7]

      (7) Lim, S.; Cho, J. Electrochemistry Communications 2008, 10, 1478.  

    8. [8]

      (8) Ma, S. B.; Nam, K.W.; Yoon,W. S.; Bak, S. M.; Yang, X. Q.; Cho, B.W.; Kim, K. B. Electrochemistry Communications 2009, 11, 1575.  

    9. [9]

      (9) Park, S. C.; Han, Y. S.; Kang, Y. S.; Lee, P. S.; Ahn, S.; Lee, H. M.; Lee, J. Y. Journal of the Electrochemical Society 2001, 148, A680.

    10. [10]

      (10) Park, S. C.; Kim, Y. M.; Kang, Y. M.; Kim, K. T.; Lee, P. S.; Lee, J. Y. Journal of Power Sources 2001, 103, 86.  

    11. [11]

      (11) Wang, X. Q.; Tanaike, O.; Kodama, M.; Hatori, H. Journal of Power Sources 2007, 168, 282.  

    12. [12]

      (12) Yue, H.; Huang, X.; Lv, D.; Yang, Y. Electrochimica Acta 2009, 54, 5363.  

    13. [13]

      (13) Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk,W. Nature Materials 2005, 4, 366.  

    14. [14]

      (14) Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Angewandte Chemie-International Edition 2008, 47, 2930.  

    15. [15]

      (15) Chen, Z. Y.; Zhu, H. L.; Ji, S.; Linkov, V.; Zhang, J. L.; Zhu,W. Journal of Power Sources 2009, 189, 507.  

    16. [16]

      (16) Kamarulzaman, N.; Yusoff, R.; Kamarudin, N.; Shaari, N. H.; Aziz, N. A. A.; Bustam, M. A.; Bla jevic, N.; Elcombe, M.; Blackford, M.; Avdeev, M.; Arof, A. K. Journal of Power Sources 2009, 188, 274.  

    17. [17]

      (17) Ye, S. H.; Lv, J. Y.; Gao, X. P.;Wu, F.; Song, D. Y. Electrochimica Acta 2004, 49, 1623.

    18. [18]

      (18) Caballero, A.; Cruz, M.; Hernán, L.; Melero, M.; Morales, J.; Castellón, E. R. Journal of Power Sources 2005, 150, 192.  

    19. [19]

      (19) Huang, Y. D.; Jiang, R. R.; Bao, S. J.; Dong, Z. F.; Cao, Y. L.; Jia, D. Z.; Guo, Z. P. Journal of Solid State Electrochemistry 2009, 13, 799.  

    20. [20]

      (20) Shaju, K. M.; Bruce, P. G. Chemistry of Materials 2008, 20, 5557.  

    21. [21]

      (21) Vivekanandhan, S.; Venkateswarlu, M.; Satyanarayana, N. Journal of Alloys and Compounds 2007, 441, 284.  

    22. [22]

      (22) Patey, T. J.; Buchel, R.; Nakayama, M.; Novak, P. Physical Chemistry Chemical Physics 2009, 11, 3756.

    23. [23]

      (23) Patey, T. J.; Buchel, R.; Ng, S. H.; Krumeich, F.; Pratsinis, S. E.; Novak, P. Journal of Power Sources 2009, 189, 149.  

    24. [24]

      (24) Cabana, J.; Valdes-Solis, T.; Palacin, M. R.; Oro-Sole, J.; Fuertes, A.; Marban, G.; Fuertes, A. B. Journal of Power Sources 2007, 166, 492.  

    25. [25]

      (25) Jiao, F.; Bao, J. L.; Hill, A. H.; Bruce, P. G. Angewandte Chemie-International Edition 2008, 47, 9711.  

    26. [26]

      (26) Luo, J. Y.;Wang, Y. G.; Xiong, H. M.; Xia, Y. Y. Chemistry of Materials 2007, 19, 4791.  

    27. [27]

      (27) Katakura, K.;Wada, K.; Kajiki, Y.; Yamamoto, A.; Ogumi, Z. Journal of Power Sources 2009, 189, 240.  

    28. [28]

      (28) Luo, J. Y.; Cheng, L.; Xia, Y. Y. Electrochemistry Communications 2007, 9, 1404.  

    29. [29]

      (29) Uchiyama, H.; Hosono, E.; Zhou, H. S.; Imai, H. Journal of Materials Chemistry 2009, 19, 4012.  

    30. [30]

      (30) Fang, H. S.; Li, L. P.; Yang, Y.; Yan, G. F.; Li, G. S. Journal of Power Sources 2008, 184, 494.  

    31. [31]

      (31) Jiang, C. H.; Dou, S. X.; Liu, H. K.; Ichihara, M.; Zhou, H. S. Journal of Power Sources 2007, 172, 410.  

    32. [32]

      (32) Kim, D. K.; Muralidharan, P.; Lee, H.W.; Ruffo, R.; Yang, Y.; Chan, C. K.; Peng, H.; Huggins, R. A.; Cui, Y. Nano Letters 2008, 8, 3948.  

    33. [33]

      (33) Fey, G.; Cho, Y.; Kumar, T. Materials Chemistry and Physics 2006, 99, 451.  

    34. [34]

      (34) Liu, Q. G.; Yang,W. S.; Zhang, G.; Xie, J. Y.; Yang, L. L. Journal of Power Sources 1999, 81, 412.  

    35. [35]

      (35) Fey, G. T. K.; Cho, Y. D.; Kumar, T. P. Materials Chemistry and Physics 2004, 87, 275.  

    36. [36]

      (36) Kalyani, P.; Kalaiselvi, N.; Muniyandi, N. Journal of Power Sources 2002, 111, 232.  

    37. [37]

      (37) Park, H. B.; Kim, J.; Lee, C.W. Journal of Power Sources 2001, 92, 124.  

    38. [38]

      (38) Subramania, A.; Angayarkanni, N.; Vasudevan, T. Materials Chemistry and Physics 2007, 102, 19.  

    39. [39]

      (39) Wu, X. M.; Li, X. H.; Xiao, Z. B.; Liu, J.; Yan,W. B.; Ma, M. Y. Materials Chemistry and Physics 2004, 84, 182.  

    40. [40]

      (40) Zhang, Y.; Shin, H. C.; Dong, J.; Liu, M. Solid State Ionics 2004, 171, 25.  

    41. [41]

      (41) Amarilla, J. M.; Petrov, K.; Pico, F.; Avdeev, G.; Rojo, J. M.; Rojas, R. M. Journal of Power Sources 2009, 191, 591.  

    42. [42]

      (42) Kovacheva, D.; Gadjov, H.; Petrov, K.; Mandal, S.; Lazarraga, M. G.; Pascual, L.; Amarilla, J. M.; Rojas, R. M.; Herrero, P.; Rojo, J. M. Journal of Materials Chemistry 2002, 12, 1184.  

    43. [43]

      (43) Zhang, J. H.; Liu, J. B.;Wang, S. Z.; Zhan, P.;Wang, Z. L.; Ming, N. B. Adv. Funct. Mater. 2004, 14, 1089.  

    44. [44]

      (44) Fu, Y. S.; Chen, L. J.; Liao, J. D.; Chuang, Y. J.; Hsu, K. C.; Chiang, Y. F. J. Appl. Polym. Sci. 2011, 121, 154.  

    45. [45]

      (45) Kanamura, K.; Rho, Y. H. J. Electroanal. Chem. 2003, 559, 69.  

    46. [46]

      (46) Kanamura, K.; Rho, Y. H. J. Solid State Chem. 2004, 177, 2094.  

    47. [47]

      (47) Kanamura, K.; Rho, Y. H. Journal of Power Sources 2006, 158, 1436.  

    48. [48]

      (48) Kanamura, K.; Rho, Y. H.; Umegaki, T. Chem. Lett. 2001, 1322.

    49. [49]

      (49) Dai, K. H.; Mao, J.; Zhai, Y. C. Acta Phys. -Chim. Sin. 2010, 26, 2130. [代克化, 毛景, 翟玉春. 物理化学学报, 2010, 26, 2130.]

    50. [50]

      (50) Hirose, S.; Kodera, T.; Ogihara, T. Journal of Alloys and Compounds 2010, 506, 883.  

    51. [51]

      (51) Peng, Z. D.; Jiang, Q. L.; Du, K.;Wang,W. G.; Hu, G. R.; Liu, Y. X. Journal of Alloys and Compounds 2010, 493, 640.  

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    12. [12]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    13. [13]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    14. [14]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    15. [15]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    19. [19]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(1013)
  • Abstract views(2606)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return