Citation: GAO Xiao-Ya, WEN Wen, SONG Zhi-Ying, ZHANG Ai-Ping, HAO Juan, HUANG Qian. Effects of Rare Earth Ions on the Interaction between Nano TiO2 and Bovine Serum Albumin in the Presence of Ultrasound[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 470-478. doi: 10.3866/PKU.WHXB201112051 shu

Effects of Rare Earth Ions on the Interaction between Nano TiO2 and Bovine Serum Albumin in the Presence of Ultrasound

  • Received Date: 24 August 2011
    Available Online: 5 December 2011

    Fund Project: 山西省自然科学基金(2010011048-1) (2010011048-1)山西医科大学科技创新基金(01200806)资助项目 (01200806)

  • The effects of rare earth ions (La3+ , Gd3+ , Yb3+ ) on the interactions between nano TiO2 and bovine serum albumin (BSA) were investigated in the presence of ultrasound. A combination of ultraviolet (UV) spectroscopy, fluorescence spectroscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) were used to characterize the interactions under simulated human physiological conditions. The endogenous fluorescence of BSA was quenched by nano TiO2 in different systems. The mechanism of fluorescence quenching was static quenching with non-radiative energy transfer. SDS-PAGE revealed that the structure of BSA was not obviously destroyed upon binding with nano TiO2 in different systems. Hydrogen bond and van der Waals interaction were deduced, on the basis of the thermodynamic parameters, to be the major driving forces. The binding distance of nano TiO2 to BSA and the thermodynamic parameters were changed in the presence of rare earth ions. However, the number of binding sites and the type of intermolecular force remained essentially unchanged. This indicated that the interaction between nano TiO2 and BSA was influenced by the rare earth ions, and that a lanthanide tetrad effect was observed. It is conjectured that rare earth ions participate in the nano TiO2-BSA interaction process by means of“ionic bridge”formation or“appositional substitution”.
  • 加载中
    1. [1]

      (1) Chen, X. B.; Mao, S. S. J. Chem. Rev. 2007, 107, 2891.  

    2. [2]

      (2) Chang, C. J. Autoimmunity 2010, 34, 234.  

    3. [3]

      (3) Piotrowska, G. B.; limowski, J.; Urban, P. L. J. Waste Manage. 2009, 29, 2587.  

    4. [4]

      (4) Ying, X. P.; Zhong,W. J. J. Toxicol 2006, 20, 334. [应贤平, 仲伟鉴. 毒理学杂志, 2006, 20, 334.]

    5. [5]

      (5) Jiang, X. Y.; Li,W. X.; Chen, J.W. Chin. J. Inorg. Chem. 2008, 24, 1588. [蒋新宇, 李文秀, 陈景文. 无机化学学报, 2008, 24, 1588.]

    6. [6]

      (6) Kang, Y. Z.; Shen, H. B.; Luo, Y. Q.; YANG, H. F.; Shao, L. J. Chin. Rare Earths 2002, 23, 22. [康玉专, 沈鹤柏, 罗衍庆, 杨海峰, 邵丽. 稀土, 2002, 23, 22.]

    7. [7]

      (7) Ni, J. Z. Bioinorganic Chemistry on Rare Earth Elements; Science Press: Beijing, 1995; p 5. [倪嘉瓒. 稀土生物无机化学. 北京: 科学出版社, 1995: 5.]

    8. [8]

      (8) Kathiravan, A.; Anandan, S.; Renganathan, R. J. Colloids Surf. A 2009, 333, 91.  

    9. [9]

      (9) Sun,W.; Du, Y. X.; Chen, J. Q.; Kou, J. P.; Yu, B. Y. J. Lumin. 2009, 129, 778.  

    10. [10]

      (10) Xu, Z.;Wang, S. L.; Gao, H.W. J. Hazard. Mater. 2010, 180, 375.  

    11. [11]

      (11) Togashi, D. M.; Ryder, A. G.; Mahon, D. M.; Dunne, P.; McManus, J. SPIE-OSA, 2007, 6628, 1K-1.

    12. [12]

      (12) Nováková, Z.; Man, P.; Novák, P.; Hozák, P.; Hodný, Z. J. Electrophoresis 2006, 7, 1277.

    13. [13]

      (13) Zhang, Z. H.; Zang, S. L.; Geng, B.;Wu, L. Y.; Feng, C.; Dong, D. B.; Su, X. Chin. J. Anal. Lab. 2006, 25, 36. [张朝红, 臧树良, 耿兵, 吴林友, 冯冲, 董殿波, 苏欣. 分析实验室, 2006, 25, 36.]

    14. [14]

      (14) Hong, F.; Huang, P. L.;Wang, K.; Li, R. C. J. Chin. Rare Earth Soc. 2002, 20, 184. [红枫, 黄沛力, 王夔, 李荣昌. 中国稀土学报, 2002, 20, 184.]

    15. [15]

      (15) Li, D. J.; Ji, B. M.; Jin, J. J. Lumin. 2008, 128, 1399.  

    16. [16]

      (16) Xu, J. G.;Wang, Z. B. Fluorescence Analysis; Science Press: Beijing, 2006; p 65. [许金钩, 王尊本. 荧光分析法. 北京: 科学出版社, 2006: 65.]

    17. [17]

      (17) Kathiravan, A.; Renganathan, R.; Anandan, S. J. Polyhedron. 2009, 28, 157.  

    18. [18]

      (18) Bian,W.; Yuan, Y.; Dong, C.; Pei, X. L. Chin. J. Spectrosc. Lab. 2008, 25, 73. [卞伟, 袁勇, 董川, 裴晓丽. 光谱实验室, 2008, 25, 73.]

    19. [19]

      (19) Yang, B. C.; Gao, F.; Liu, X. Y.; Zhang, L. J. Cent. South Univ. (Science and Technology) 2008, 39, 64. [杨兵初, 高飞, 刘晓艳, 张丽. 中南大学学报(自然科学版), 2008, 39, 64.]

    20. [20]

      (20) Ma, L.;Wei, Z. Q.; Huang, A. M.; Yang, H.; He,W. R.; Lin, R. S. Acta Phys. -Chim. Sin. 2009, 25, 1816. [马林, 魏志强, 黄爱民, 杨华, 何维仁, 林瑞森. 物理化学学报, 2009, 25, 1816.]

    21. [21]

      (21) Kathiravan, A.; Jhonsi, M. A., Renganathan, R. J. Lumin. 2011, 131, 1975.  

    22. [22]

      (22) Kathiravan, A.; Renganathan, R. J. Colloids Surf. A 2008, 324, 176.  

    23. [23]

      (23) Naveenraj, S.; Anandan, S.; Kathiravan, A.; Renganathan, R.; Ashokkumar, M. J. Pharm. Biomed. Anal. 2010, 53, 804.  

    24. [24]

      (24) Ding, F.; Zhao, G. Y.; Huang, J. L.; Sun, Y.; Zhang, L. Eur. J. Med. Chem. 2009, 44, 4083.  

    25. [25]

      (25) Yang, J. Y.;Wang, L.; Zheng, M. D.; Zhang, A. P. J. Instrum. Anal. 2009, 28, 194. [杨锦艳, 王丽, 郑茂东, 张爱平. 分析测试学报, 2009, 28, 194.].

    26. [26]

      (26) Ling, P.; Jiang, Z. C.; Hu, B.; Qin, Y. C. J. Rare Earths 2003, 21, 474.

  • 加载中
    1. [1]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    2. [2]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    3. [3]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    4. [4]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    5. [5]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    6. [6]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    7. [7]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    10. [10]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    11. [11]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    12. [12]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    16. [16]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    17. [17]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    18. [18]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

Metrics
  • PDF Downloads(895)
  • Abstract views(2315)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return