Citation: GAO Xiao-Ya, WEN Wen, SONG Zhi-Ying, ZHANG Ai-Ping, HAO Juan, HUANG Qian. Effects of Rare Earth Ions on the Interaction between Nano TiO2 and Bovine Serum Albumin in the Presence of Ultrasound[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 470-478. doi: 10.3866/PKU.WHXB201112051 shu

Effects of Rare Earth Ions on the Interaction between Nano TiO2 and Bovine Serum Albumin in the Presence of Ultrasound

  • Received Date: 24 August 2011
    Available Online: 5 December 2011

    Fund Project: 山西省自然科学基金(2010011048-1) (2010011048-1)山西医科大学科技创新基金(01200806)资助项目 (01200806)

  • The effects of rare earth ions (La3+ , Gd3+ , Yb3+ ) on the interactions between nano TiO2 and bovine serum albumin (BSA) were investigated in the presence of ultrasound. A combination of ultraviolet (UV) spectroscopy, fluorescence spectroscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) were used to characterize the interactions under simulated human physiological conditions. The endogenous fluorescence of BSA was quenched by nano TiO2 in different systems. The mechanism of fluorescence quenching was static quenching with non-radiative energy transfer. SDS-PAGE revealed that the structure of BSA was not obviously destroyed upon binding with nano TiO2 in different systems. Hydrogen bond and van der Waals interaction were deduced, on the basis of the thermodynamic parameters, to be the major driving forces. The binding distance of nano TiO2 to BSA and the thermodynamic parameters were changed in the presence of rare earth ions. However, the number of binding sites and the type of intermolecular force remained essentially unchanged. This indicated that the interaction between nano TiO2 and BSA was influenced by the rare earth ions, and that a lanthanide tetrad effect was observed. It is conjectured that rare earth ions participate in the nano TiO2-BSA interaction process by means of“ionic bridge”formation or“appositional substitution”.
  • 加载中
    1. [1]

      (1) Chen, X. B.; Mao, S. S. J. Chem. Rev. 2007, 107, 2891.  

    2. [2]

      (2) Chang, C. J. Autoimmunity 2010, 34, 234.  

    3. [3]

      (3) Piotrowska, G. B.; limowski, J.; Urban, P. L. J. Waste Manage. 2009, 29, 2587.  

    4. [4]

      (4) Ying, X. P.; Zhong,W. J. J. Toxicol 2006, 20, 334. [应贤平, 仲伟鉴. 毒理学杂志, 2006, 20, 334.]

    5. [5]

      (5) Jiang, X. Y.; Li,W. X.; Chen, J.W. Chin. J. Inorg. Chem. 2008, 24, 1588. [蒋新宇, 李文秀, 陈景文. 无机化学学报, 2008, 24, 1588.]

    6. [6]

      (6) Kang, Y. Z.; Shen, H. B.; Luo, Y. Q.; YANG, H. F.; Shao, L. J. Chin. Rare Earths 2002, 23, 22. [康玉专, 沈鹤柏, 罗衍庆, 杨海峰, 邵丽. 稀土, 2002, 23, 22.]

    7. [7]

      (7) Ni, J. Z. Bioinorganic Chemistry on Rare Earth Elements; Science Press: Beijing, 1995; p 5. [倪嘉瓒. 稀土生物无机化学. 北京: 科学出版社, 1995: 5.]

    8. [8]

      (8) Kathiravan, A.; Anandan, S.; Renganathan, R. J. Colloids Surf. A 2009, 333, 91.  

    9. [9]

      (9) Sun,W.; Du, Y. X.; Chen, J. Q.; Kou, J. P.; Yu, B. Y. J. Lumin. 2009, 129, 778.  

    10. [10]

      (10) Xu, Z.;Wang, S. L.; Gao, H.W. J. Hazard. Mater. 2010, 180, 375.  

    11. [11]

      (11) Togashi, D. M.; Ryder, A. G.; Mahon, D. M.; Dunne, P.; McManus, J. SPIE-OSA, 2007, 6628, 1K-1.

    12. [12]

      (12) Nováková, Z.; Man, P.; Novák, P.; Hozák, P.; Hodný, Z. J. Electrophoresis 2006, 7, 1277.

    13. [13]

      (13) Zhang, Z. H.; Zang, S. L.; Geng, B.;Wu, L. Y.; Feng, C.; Dong, D. B.; Su, X. Chin. J. Anal. Lab. 2006, 25, 36. [张朝红, 臧树良, 耿兵, 吴林友, 冯冲, 董殿波, 苏欣. 分析实验室, 2006, 25, 36.]

    14. [14]

      (14) Hong, F.; Huang, P. L.;Wang, K.; Li, R. C. J. Chin. Rare Earth Soc. 2002, 20, 184. [红枫, 黄沛力, 王夔, 李荣昌. 中国稀土学报, 2002, 20, 184.]

    15. [15]

      (15) Li, D. J.; Ji, B. M.; Jin, J. J. Lumin. 2008, 128, 1399.  

    16. [16]

      (16) Xu, J. G.;Wang, Z. B. Fluorescence Analysis; Science Press: Beijing, 2006; p 65. [许金钩, 王尊本. 荧光分析法. 北京: 科学出版社, 2006: 65.]

    17. [17]

      (17) Kathiravan, A.; Renganathan, R.; Anandan, S. J. Polyhedron. 2009, 28, 157.  

    18. [18]

      (18) Bian,W.; Yuan, Y.; Dong, C.; Pei, X. L. Chin. J. Spectrosc. Lab. 2008, 25, 73. [卞伟, 袁勇, 董川, 裴晓丽. 光谱实验室, 2008, 25, 73.]

    19. [19]

      (19) Yang, B. C.; Gao, F.; Liu, X. Y.; Zhang, L. J. Cent. South Univ. (Science and Technology) 2008, 39, 64. [杨兵初, 高飞, 刘晓艳, 张丽. 中南大学学报(自然科学版), 2008, 39, 64.]

    20. [20]

      (20) Ma, L.;Wei, Z. Q.; Huang, A. M.; Yang, H.; He,W. R.; Lin, R. S. Acta Phys. -Chim. Sin. 2009, 25, 1816. [马林, 魏志强, 黄爱民, 杨华, 何维仁, 林瑞森. 物理化学学报, 2009, 25, 1816.]

    21. [21]

      (21) Kathiravan, A.; Jhonsi, M. A., Renganathan, R. J. Lumin. 2011, 131, 1975.  

    22. [22]

      (22) Kathiravan, A.; Renganathan, R. J. Colloids Surf. A 2008, 324, 176.  

    23. [23]

      (23) Naveenraj, S.; Anandan, S.; Kathiravan, A.; Renganathan, R.; Ashokkumar, M. J. Pharm. Biomed. Anal. 2010, 53, 804.  

    24. [24]

      (24) Ding, F.; Zhao, G. Y.; Huang, J. L.; Sun, Y.; Zhang, L. Eur. J. Med. Chem. 2009, 44, 4083.  

    25. [25]

      (25) Yang, J. Y.;Wang, L.; Zheng, M. D.; Zhang, A. P. J. Instrum. Anal. 2009, 28, 194. [杨锦艳, 王丽, 郑茂东, 张爱平. 分析测试学报, 2009, 28, 194.].

    26. [26]

      (26) Ling, P.; Jiang, Z. C.; Hu, B.; Qin, Y. C. J. Rare Earths 2003, 21, 474.

  • 加载中
    1. [1]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    2. [2]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    3. [3]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    4. [4]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    5. [5]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    6. [6]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    7. [7]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    8. [8]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    9. [9]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    10. [10]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    11. [11]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    12. [12]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    13. [13]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    17. [17]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    18. [18]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    19. [19]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    20. [20]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

Metrics
  • PDF Downloads(895)
  • Abstract views(2348)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return